
/

NASA

Technical

Memorandum

NASA TM - 10351?

(NASA-TM-103511) AN

5FARCH TECHH!OU E FOR

pROGRAMMING PPO_LEMS

AN IMPROVED EXPLORATORY SEARCH TECHNIQUE

FOR PURE INTEGER LINEAR PROGRAMMING

PROBLEMS

By F.R. Fogle

Systems Analysis and Integration Laboratory

Science and Engineering Directorate

October 1990

IMPROVFD £XPL_PATORY

PURE INT_GFR LINEAR

(NASA) 130 p CSCL OgB

G3/ol

N91-13910

N/L. 
National Aeronautics and
Space Administration

George C. Marshall Space Flight Center

MSFC- Form 3190 (Rev. May 1983)



i



Report Documentation Page
National Aeronautic= end
Space Adminiatration

1. Report No.

NASA TM-I03517

2. Government Accession No.

4. Title and Subtitle

An Improved Exploratory Search Technique for Pure Integer

Linear Programming Problems

7. Author(s)

F.R. Fogle

9. Performing Organization Name and Address

George C. Marshall Space Flight Center

Marshall Space Flight Center, Alabama 35812

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration

Washington, DC 20546

3. Recipient's Catalog No.

5. Report Date

October 1990

6. Performing OrganlzatJofl Code

8. Performing Organlzalion Report No.

10. Work Unit No.

11. Contract or Grant No.

13. Type of Report and Period Covered

Technical Memorandum

14. Sponsoring Agency Code

15. Supplementary Notes

Prepared by Systems Analysis and Integration Laboratory, Science and Engineering Directorate.

16. Abstract /

This report documents Ih_edevelopment of a heuristic procedure for the solution of pure integer linear
programming problems. The procedure draws its methodology from the ideas of the Hooke and lccves
type ] and type H exploratory searches, greedy procedures, and neighborhood searches. It utilizes an
efficient rounding procedure to obtain its first feasible integer point from the optimal continuous solution

obtained via the simplex method.

Since this procedure is based entirely on simple addition or subraction of one to each variable of a

point in n-space and the subsequent comparison of candidate solutions to a given set of constraints, it

facilitates significant complexity improvements over existing techniques. It also obtains the same optimal

solution found by the branch-and-bound technique in 44 out of 45 small to moderate size test problems.

Two example problems are worked in detail to show the inner workings of the procedure. Furthermore,

using an established weighted scheme for comparing computational effort involved in an algorithm, a

comparison of this algorithm is made to the more established and rigorous branch-and-bound method. A

computer implementation of the procedure, in PC-compatible Pascal, is also presented and discussed.

This procedure for finding optimal solutions to integer-type problems may be applied to various systems

engineering situations in the conceptual, preliminary, and detail design phases of the system development
cvcle.

17. Key'Words (Suggested by Author(s))

Systems Engineering

Integer Programming

Optimization Techniques

18. Distribution Statement

IJCtcO_rts,_l¢, _,%.'_t_ _,

Unclassified - Unlimited

19. Security Classif. (of this report)

Unclassified

20. Security Classi[ (of this page)

Unclassified

21. No. of pages

131

22. Price

NTIS

_ASA FORM 1626 OCT86
For sale by the National Technical Information Service, Springfield, VA 22161-2171



Z



TABLE OF CONTENTS

i

J

I. INTRODUCTION ....................................................................................

A. Background .......................................................................................

B. Research Topic ....................................................................................

C. Description of Succeeding Sections ............................................................

II. LITERATURE REVIEW ............................................................................

llI.

A. Introduction .......................................................................................

B. Integer Programming .............................................................................
I. General .........................................................................................

2. Cutting Methods ..............................................................................

3. Enumerative Methods ........................................................................

4. Heuristic, Approximate, and Direct Search Approaches ................................

5. Nonlinear Problems ..........................................................................

6. Rounding Procedures ........................................................................

7. Applications ...................................................................................
C. Hooke and Jeeves Direct Search ................................................................

1. Theory ..........................................................................................

2. Hooke and Jeeves Example .................................................................

3. Improvements, Advantages, and Disadvantages .........................................

PROPOSED ALGORITHM - AN IMPROVED EXPLORATORY SEARCh I

TECHNIQUE FOR INTEGER PROGRAMMING (IESIP) ..................................

A. Approach ..........................................................................................

1. General .........................................................................................

2. Solution Procedure and Modifications Required to Existing Schemes ................

3. Advantages in Using the Proposed Procedure ............................................

B. Other Details of Algorithm ......................................................................

I. Rounding to Discrete Starting Solution ....................................................
2. Constraint Involvement ......................................................................

3. Stopping Rule .................................................................................

C. Example Problems ................................................................................

D. Justification of Optimality .......................................................................

E. Computer Implementation .......................................................................

IV. COMPARISON OF RESULTS - COMPUTATIONAL EXPERIMENTS .................

A, Algorithm Performance Measures .............................................................
1. Current Methods ..............................................................................

2. Proposed Alternative .........................................................................

III

Page

I

2

2

3

3

3

5

8

12

13

14

16

16

16

18

21

22

22

22

22

28

29

29

30

30

32

40

41

44

44

44

45

PRECEDING PAGE BLANK NOT FILMED



TABLE OF CONTENTS (Continued)

B. Algorithm Computational Complexity Scoring ..............................................

1. Number of Operations .......................................................................

2. Weight Associated With Each Operation ..................................................

C. Example Problem ..................................................................................

D. Computational Experience With Test Problems ..............................................

E. Multiple Optima ..................................................................................

F. Restrictions Required of IESIP ..................................................................

V. CONCLUSIONS AND RECOMMENDATIONS ...............................................

A. Conclusion ........................................................................................

B. Recommendations for Future Work .........................................................

REFERENCES ................................................................................................

BIBLIOGRAPHY ............................................................................................

APPENDIX A - Fractional Cut and Branch-and-Bound Examples ....................................

APPENDIX B - IESIP Pascal Computer Code ...........................................................

APPENDIX C - Test Problems .............................................................................

Page

46

47

49

5O

55

56

58

59

59

60

61

65

71

83

111

iv



/

Figure

1.

2.

3.

4.

5.

6.

.

8.

9.

10.

11.

LIST OF ILLUSTRATIONS

Title

Area of feasible integer solutions ..............................................................

Gomory's cuts ....................................................................................

Cutting plane procedure block diagram .......................................................

Branch-and-bound tree diagram ...............................................................

The branch-and-bound procedure ...............................................................

Information flow diagram for direct minimization using

Hooke and Jeeves pattern search ...............................................................

Hooke and Jeeves exploratory and pattern moves ...........................................

Hooke and Jeeves exploratory search progression ...........................................

Modified type I exploratory search ............................................................

IESIP description flow diagram ..............................................................

Two variable example problem ................................................................

Page

6

7

8

10

11

17

18

23

25

27

36

V-



Table

1.

2.

3.

4.

5.

LIST OF TABLES

Title

Sample input for IESIP computer program ....................................................

Sample output for IESIP computer program ...................................................

Worst case microprocessor instruction times ..................................................

Computational results of test problems .........................................................

Summary of test problem results ................................................................

Page

42

43

50

53

54

vi



t

TECHNICAL MEMORANDUM

AN IMPROVED EXPLORATORY SEARCH TECHNIQUE FOR PURE INTEGER

LINEAR PROGRAMMING PROBLEMS

J

I. INTRODUCTION

A. Background

Optimization, as related to mathematical programming, means to maximize (or minimize) an

objective function of one or more variables subject to a set of confining functions or constraints.

The distinguishing feature of discrete optimization, also referred to as integer programming or

integer optimization, is that some or all of the variables are required to be in a discrete set,

typically a subset of integers. These discrete (or integer) restrictions allow the mathematical

representation of phenomena or alternatives where indivisibility is required or where there is not a
continuum of alternatives.

The normal linear programming problem generally results in an optimal solution that has

fractional (continuous) values for some or all of its decision variables. However, these fractional

values in an optimal solution are not always acceptable as a realistic solution. For example, in a

production optimization problem, 25.7 houses, 18.6 airplanes, or 5.4 machines may constitute

optimal solutions, but do not represent useful results. Rounding off these results to produce integer

solutions may lead to an infeasible solution, or such a solution may not be the global optimal

integer solution for the problem. In these situations, only the integer programming problem and its

solution can provide acceptable results. An integer programming problem where all the variables

are restricted to integer values is called a "pure integer programming problem." A "mixed integer

programming problem"" has some variables that are restricted to integers while others are allowed to

be fractional (continuous). There is also a special type of integer programming problem called the

"'zero-one integer problem,'" in which some or all decision variables are restricted to values of
either zero or one.

Practical discrete (integer) optimization problems are very prevalent. An important and wide-

spread area of application concerns the management and efficient use of scarce resources to

increase productivity. These include operational problems such as the distribution of goods,

machine scheduling, and production scheduling. They also include planning problems such as capi-

tal budgeting, facility location, and portfolio selection. Also included are design problems such as

telecommunications, power system, transporation network design, VLS[ circuit design, and the

design of automated production systems. Integer optimization problems also arise in statistics (data

analysis), physics (determination of minimum energy states), cryptography (designing unbreakable

codes), and mathematics (proving combinatorial theorems). Moreover, applications of integer

optimization are in a period of rapid development because of the widespread use of microcomputers

and the data provided by information systems [!]. This rapid development is more pronounced in

the manufacturing sector of the economy where increased competition and flexibility provided by

new technology in the global marketplace make it imperative to seek better solutions from larger,

more constraining, and more complex sets of alternatives.



Integerprogrammingis one approachto problemsof combinatorialoptimization.A com-
binatorial optimizationproblemis definedas assigningdiscretenumericalvaluesto a finite set of
variablesso as to maximizesomeobjective function while satisfyinga given set of constraintson
the valuesthe variablescanassume.The transportationproblemand the assignmentproblemare
familiar examples.The transportationproblemis an integerprogrammingproblemand the assign-
mentproblem is a zero-oneprogrammingproblem.Elementaryconsiderationscan teachsome
importantlessonsregardingthe numericalcomplexityand vastnesstheseintegerprogramming
problemscanpossess.Any solution method that requires the enumeration of all 2" possible combina-

tions of "yes" and "no" decisions on n items may work well for up to 10 or 20 items. However,

complete enumeration of all 2" combinations requires 1,000 times as much work when n increases

from 20 tO 30 [2]. It is this potential cost of both time and money regarding enumeration of possi-

bilities that has encouraged extensive theoretical research over the past three decades. This discus-

sion will build on some of this theoretical research and also attempt to develop a new methodol-

ogy. This new procedure will draw principally on the developments from the nonlinear pro-

gramming arena, specifically the 1961 work of Robert Hooke and T. A. Jeeves.

B. Research Topic

The research topic documented in this report will establish a new methodology for solving

pure integer programming problems by utilizing a modified version of the univariate exploratory

move developed by Robert Hooke and T. A. Jeeves. Their technique was originally developed for

application to nonlinear continuous problems. The method will also take some of its technique from

the greedy procedure and the idea of unit neighborhoods. A rounding scheme will be determined

which best suits the needs of these type problems. This scheme will use the continuous solution

found by traditional methods (simplex or other suitable technique) and will create a feasible integer

starting point. The Hooke and Jeeves exploratory search will be modified to accommodate integers

and constraints and will then be employed to determine an optimal integer solution from the

feasible starting solution. A user-friendly computer routine is presented that allows for rapid solu-

tion of problems up to 20 variables in size.

Two of the 45 test problems will be presented in detail. The remaining 43 problems are

solved using the traditional branch-and-bound method and then compared by a computational

complexity factor to the new technique. A separate set of appendices will document the software

used, the test problems, and the details of two more accepted procedures for solving integer

programming problems, fractional-cut, and branch-and-bound.

Z

C. Description of Succeeding Chapters

The pertinent literature which was reviewed during this research is discussed in section II.

The literature review was directed toward traditional integer programming techniques and the theory

behind the exploratory and pattern searches developed by Robert Hooke and T. A. Jeeves. Also

discussed are any relevant data on research regarding the use of direct search techniques on integer

programming problems.



SectionIII discussesin detail the new algorithm, ImprovedExploratorySearchInteger
Programming(IESIP). Examplesof small variableand constraintsizearepresentedto show the
technique'sinner workings. Also shownis the justification for acceptingthe solution found asthe
optimal.

SectionIll also providesthe computerimplementationof the technique.SectionIV extends

this discussion to examples and compares the new technique on a basis of computational com-

plexity to the branch-and-bound method. Some of the same examples presented in section III are

revisited along with larger and more difficult problems.

In section V, conclusions are drawn from the research and computational experiments.

Recommendations and suggestions for future research are also presented.

II. LITERATURE REVIEW

J

A. Introduction

The focus of the literature review was on the following topical areas: traditional integer

programming techniques, heuristic and approximate techniques, integei- rounding, nonlinear tech-

niques, and the theory and methodology behind the Hooke and Jeeves direct search technique.

A review of the 1960 through September 1989 "Dissertations Abstracts International" (Science and

Engineering) substantiated the belief that no dissertations have been written that specificiaIly present

the methodology shown in this report for the solution of integer programming problems. The

abstracts were examined back to 1960, since this was the general timeframe of the inception of

both integer programming and the Hooke and Jeeves procedure. Further examination of technical

literature during the same time period was conducted by utilizing an online computer search avail-

able at the Redstone Scientific Information Center (RSIC). It also revealed no articles on the

proposed subject. The only related areas of discussion were direct search techniques (which will be

examined in more detail in section B.4), but none of them used the proposed procedure as their

methodology.

B. Integer Programming

1. General

As stated earlier, integer programming concerns itself with the class of optimization

problems in which some or all the variables are required to be integer. More specifically, it can be

stated that any decision problem with an objective function to be maximized (or minimized) in

which the variables must assume nonfractiona[ or discrete values may be classified as an integer

optimization problem [3].

Integer programming confines itself to a specific group of problems that are part of a larger

classification known as "mathematical programming" problems. Garfinkel and Nemhauser [4]

present the following notation in representing mathematical and integer programming problems:

3



A general mathematical programming problem can be stated in the form

max fix) ; x _ S C_C.R" ( 1)

where R" is the set of all n-dimensional vectors of real numbers and f is a real-valued function

defined on S, where S is called the constraint set and f is called the objective function. Every x e S

is a feasible solution to equation (I). An integer programming problem is a mathematical pro-

gramming problem in which

SC__.Z"C__R"

where Z" is the set of all n-dimensional integer vectors.

For the linear case, an integer programming problem is formulated as

') = CX

and

S = {xlA.r = b, x /> 0 integer} (2)

where A is an m × n matrix; b is an m-vector; c is an n-vector; and 0 is an n-vector of zeros. The

set S is a convex set of linear constraints which is also mathematically referred to as a polyhedron

or polytope. The more standard form of the integer linear programming problem (ILP) is

max (min) cx

subject to Ax = b

.v >t 0 and integer,

(3)

or written in sunanaation notation,

I1

max (min) _ cj._j
j=l

(4)



_) /> 0 and integer, j =

"subject to _] a0.y i b i , i= 1,2 ..... m
j=l

I ,2 .... n.

J

This is the standaM linear lornmlation of inteoere pro_ralnnline_ _ problems. Nonlinear

problems and their current solution methods will be discussed later, if all variables X; in equation

{41 are restricted to imeger values, the problem is referred to as a "'pure" integer problem. Other-

wise, if some .r; values can take on real values, then the problem becomes a "'mixed" integer

problcnl.

Much progress has been made in developing procedures for handling these type problems.

Since the pioneering work of Ralph Gomory in the late 1950"s, integer programming has been an

exciting and rapidly developing area of operations research [4]. The past three decades have
witnessed extensive theoretical research in this area. The result is a vast collection of solution

methods and algorithms and numerous applications to real-world problems.

Current methods for handling integer programming problems generally are categorized into

the ffdlowing two broad types: (I) cutting methods and (2) search (or enumerative) methods.

Cutting methods systematically add special "'secondary" constraints to the continuous optimum,

which represent necessary conditions Ior integrality. The continuous solution space is modified by

these cuts until its continuous optimum extreme point satisfies the integer conditions. This group of

IP methods gets its name from the fact that the added "'secondary" constraints cut (or eliminate)

parts of the solution space that do not contain feasible integer points. In contrast, search methods

have their roots in the idea of enumerating all feasible integer points. The basic idea is to test only

a small portion of the feasible integers explicitly, but also account for the remainder implicitly. The

now famous branch-and-bound technique, originally developed by A. H. Land and A. G. Doig in

1960, is the most common of the search methods. It, like the cutting methods, starts with a con-

tinuous optimal solution, but then systematically "partitions" the solution space into smaller

subproblems by deleting parts that are integrally infeasible [5].

The above-mentioned categories of integer programming problems, cutting methods, and

search methods, will now be discussed separately and in detail.

2. Cutting Methods

The optimal solution to an integer linear programming problem can very well be an interior

point of the set of all feasible solutions. Therefore, algorithms (e.g., simplex) that explore only the

extreme points of this set, will be unable to locate such a solution. One way to eliminate this

problem is by cutting off sections of the initial set of feasible solutions with hyperplanes such that

the optimal integer solution becomes an extreme point of the new set of feasible solutions. Hyper-

planes so used are called "cutting" planes. There are many ways and variations on methods for

obtaining these cutting planes, but this discussion will concentrate mostly on the original method

developed in 1958 by Ralph Gomory [6].



Cutting planes were used as early as 1952, when Dantzig, Fulkerson, and Johnson began

work on the familiar traveling salesman problem. They employed subtour elimination constraints as

well as ad hoc linear constraints generated to exclude a current fractional answer. By 1958,

Gomory had developed his finitely convergent cutting plane method [7]. In 1960, Gomory pro-

duced a second cutting plane algorithm for integer programming that computationally requires only

additions and subtractions [8].

As stated earlier, the cutting plane method attempts to pare down the feasible solution space

so that it contains integer corner points. Figure I is a graphic representation of a typical two-

variable feasible solution area for a maximization problem.

The cutting planes reduce the area of feasible solutions to "force" integer corner points.

Three cutting planes (1, 2, and 3) have been added in figure 2, which slice into the solution space,

thereby eliminating some of the shaded portion in the original solution space. The boundaries of

the reduced area of feasible solutions are said to make up the "convex hull." This is defined as the

smallest convex set necessary to include all the feasible integer points [5].

The detailed mechanics of how cutting plane equations are developed are illustrated by

example in appendix A. Here we will only offer a feeling for how the procedure works. First,

cutting planes are developed in order to force the noninteger valued variables to integer values. If a

starting solution involves a number of noninteger variables, then usually one variable is selected to

provide the basis for developing a new constraint (cutting plane). Once the constraint has been

X2

_fll

b

0

d I I_
Xl

Figure !. Area of feasible integer solutions.



×2

b

J

Xl

Figure 2. Gomory's cuts.

identified, it can be added to the original constraint cut and then, by utilizing the dual simplex

method, the constraint is incorporated in the final tableau of the previous solution. This allows the

optimal solution of the larger problem to be found without starting from scratch. Sometimes, it is

not necessary to add enough cutting planes to reduce the soIution space to its convex hull. Depend-

ing on the objective function, it may take as little as one cutting plane to reach the optimal integer

solution. This algorithm is sometimes referred to as the "fractional method" because all the nonzero

coefficients of the generated cut are less than one. The block diagram in figure 3 illustrates the

Gomory cutting lane procedure in a logical flow process. The fractional cutting method is

applicable to pure integer programming problems while its counterpart, "the mixed algorithm," is

designed for the mixed integer problem.

Many modifications and extensions to Gomory's basic algorithm have been developed since

1960. In 1965, GIover produced a dual algorithm for solving pure integer problems. The general

idea of Glover's method is to find the optimal integer solution by determining lower bounds on

each variable in such a way as to satisfy a necessary integrality condition. Ben-Israel and Charnes

were the first to suggest a primal cutting algorithm along the same ideas of Gomory's all integer

cutting method in 1962. The basic difference is that primal (integer) feasibility is maintained at all

stages of calculations. Glover and Young developed the primal cutting plane algorithms further in

1968 and 1971, respectively [3].

7



Start

Continuous

Solution

Found Via

Simplex

solvesingsimpDualIex

Is the

Solution

Integer?

I
No

Add

Gomory 's

Cut

--Yes->] Stop ]
%

Figure 3. Cutting plane procedure block diagram.

No single cutting procedure can be considered uniformly superior from a computational

standpoint, although in isolated cases of specially structured problems cuts have proven effective.

The general feeling among most experts is that cutting methods should not be relied upon to solve

integer problems regardless of size. Experience has shown that some rather small problems could

not be solved by cutting methods. For instance, cases have been reported of random changes in

constraint order causing computationally easy problems to become extremely formidable [5].

Certain problems, however, tend to be solved easily using cuts such as Gomory's original frac-

tional cutting plane method. Among these are set covering problems such as those encountered in a

typical crew scheduling problem.

3. Enumerative Methods

There is no generally accepted terminology for the class of integer programming methods

known as branch-and-bound, search, or enumerative procedures. Each of these titles refers to

methods for solving integer programming problems by breaking up the feasible set into subsets,

calculating bounds on the objective function value over each subset, and using the bounds to dis-

card certain subsets of solutions from consideration. However, within this general class of methods,

one can distinguish two basic prototypes_ One, introduced by Land and Doig [9] in 1960, and later

modified by Dakin in 1965 [10], and Driebeck in 1966 [! 1], is aimed at solving several pure and

mixed integer problems and uses linear programming as its main vehicle. The other one, typified

by Balas in 1965 [12], Lemke and Speilberg in 1967 [13], and Geoffrion in 1969 [14], is con-

cerned only with solving 0-1 problems and uses as its main tool logical tests exploring the

implications of the binary nature of the variables or inequalities. Most practitioners prefer to
reserve the term branch-and-bound for the first of the above two approaches while calling the

second one "implicit" enumeration. Others consider this distinction less and less relevant with the

passage of time, as the two approaches are increasingly borrowing from each other, to the extent

that the more recent algorithms usually contain elements of both.

The branch-and-bound techniques like the cutting plane methods solve integer programming

problems by first considering their continuous solution. But, as mentioned earlier and in contrast to

cutting methods, branch-and-bound applies itself directly to both "pure" and "mixed" problems.

The general procedure for the branch-and-bound method will briefly be discussed below and a

detailed example problem presented in appendix A.



The branch-and-boundmethodfor the solution of a constrained integer problem uses

basically the liHlowing steps:

• Branching Step: The solution starts with the partitioning of all feasible solutions into

smaller subsets, each representing a subproblem of the original problem.

Bounding Step: Then the method finds, for a given subset, a lower bound value Z for

an objective function (maximization problem). Usually, this is the value of the objective

function lot the best feasible integer solution found so far.

Fathoming Step: After each branching and bounding step, the method excludes a par-

ticular subset from further consideration if (!) the subset has no feasible solution, (2) the

subset is feasible but has a lower bound value less than or equal to the lower bound

value of a feasible solution known to date, and (3) the subset has already reached its best
feasible solution.

Terminating Step: The partitioning of all feasible solutions of the original problem con-

tinues through the repetition of the first three steps. When a feasible solution is tbund for

any subset that is higher than the best lower bound value known to date, the new value

becomes the new lower bound of the original problem. At the end of this systematic

search process, the lower bound value, which remains uncontested, determines the

optimal solution of the problem.

The history and systematic approach to branching-and-bounding of the subsets can be shown

in a tree diagram similar to the example problem shown below and in figure 4. Each node of this

diagram represents a subset defined by a subproblem.

maximize Z = fir s,x2) = 2.rj + 8.r2

subject to: 2.vl- 6x2 _ 3

- Ix l + 4x2 _< 5

2.vt 4- 2.r2 _ 13

.v_,.r2 1/- 0 and integer

The tlow chart depicted in figure 5 summarizes the branch-and-bound procedure.

Branch-and-bound methods have historically been more readily applied to problems for the

following two reasons: (I) they can be developed and modified to enumerate only a portion of all

candidate solutions while automatically discarding the remaining points as nonpromising, and (2)

they lend themselves readily to computer-based solutions II6]. The one major disadvantage of this



Initial Node

xI = 4.2

x2 = 2.3
Z = 26.8

/
Xl_> 5

/
First Node

Xl = 5
x 2 = 1.5
Z = 22

x_ _< 4

Second Node

Xl = 4
x2 = 2.25
Z = 26

/
x2 Z 3

/
Third Node

Xl = 4
x = 3

Inf2asible

x2 _- 2

Fourth Node

Xl = 4

x2 = 2
Z = 24

Fathomed Optimal Solution

Figure 4. Branch-and-bound tree diagram.

%

10



£ Start9

Solve the continuous

(non-integral) ver-

sion of the original

problem. Call this,

temporarily, problem A

I
solution;

Yes

get
requirement_
satisfied?

No

Yes

-\

Stop:

optimal
• solution

has been

found.

Arbitrarily select from the solution to

problem A a required integer variable,

x., which is not integer in value. If

t_e value of x_ is b., form two descen-
dant problems that add to problem A

the following constraints, respectively:

a. xj _ integer portion of bj

b. xj a next integer greater than bj

Solve the continuous versions of the

two descendant problems.

l
From all feasible problems presently not I

having descendants, determine which has I

the best value of the objective func- l
tion. Rename this problem problem A.

!

Figure 5. The branch-and-bound procedure [15].

11



classs of methods is that it is necessary to solve a complete linear programming problem at each

node. In spite of this, branch-and-bound methods are the most effective in solving integer prov

gramming problems of practical size. Most all available commercial codes are based on these
methods. This does not mean that all integer-type problems are solved with branch-and-bound

methods, but rather that if given a choice between a cutting plane method and a branch-and-bound,

the latter is usually utilized [5].

4. Heuristic, Approximate, and Direct Search Approaches

Another approach to solving integer programming problems that has received attention has

been the use of nonexact (heuristic or approximate) procedures. Many of these techniques give an

approximate solution to the problems. They are designed to provide a "good" solution, but in most

cases cannot guarantee optimality.

Methods of this kind are valuable for several reasons. First, computational experience with

(exact) algorithms has sometimes not been the best on certain types of problems. Many real-world

problems of interest are too large to be solved exactly. Secondly, enumerative algorithms invariably

benefit from beginning with a good feasible solution. Finally, a feasible solution can provide a

lower bound on the optimal objective function value. This bound can be used for fathoming in

enumerative algorithms and in cutting plane algorithms as a cut or as a source row for a cut [4].

Search techniques for discrete optimization include those developed by Healy in 1964 [17],

Reiter and Sherman in 1965 [18], Reiter and Rice in 1966 [19], Kreuzberger in 1970 [20], and

Kochenberger, McCarl, and Wyman in 1974 [21].

The Reiter and Sherman approach combines an intelligent search with a random search. It

starts with any point and then by using a suitably chosen local search technique, it moves to better

points until eventually no further improvement is possible. A set of local optima is generated. The

local optima are then sampled sequentially according to a plan (suitable probability distribution)

that stops when the expected return from further sampling is not sufficient to pay the cost of

further sampling. Reiter and Rice proposed a solution procedure consisting of (a) choosing a ran-

dom starting point, (b) locating a feasible point, and (c) applying a modified gradient maximizing

procedure.

Developments in direct search methods and developments in cutting methods and enumera-

tion techniques reached their high point in volume in the early 1970's. Recently though, progress

has been refocused on efficient approximation and direct search heuristic procedures for finding

feasible integer solutions for integer programming problems. These solutions are not necessarily

optimal, but usually will be better than can be found by simple rounding [22].

A new approach has been the combining (or hybridization) of two proven mathematical

programming techniques to solve integer programming problems. These two methods are dynamic

programming and some proven integer method such as branch-and-bound. The dynamic pro-

gramming methodology is used to search candidate hyperplanes efficiently for the optimal feasible

integer solution. Relaxations and fathoming criteria, which are fundamental to branch-and-bound,

are incorporated within the separation and initial fathoming provided by the dynamic programming

12



framework. This idea was explained and tested in the late 1970"s by Cooper and Cooper [23] and

also by Marsten and Marin [24]. Their computational results for small to moderate size problems

showed promising results for the hybrid technique advocates.

Important to the development of the procedure proposed here are two heuristic approaches

known as greedy procedures and local improvement schemes. In a general sense, a "greedy" proce-

dure is one in which the decision maker selects at each stage of the process an alternative that is

best among the feasible alternatives without regard to the impact the choice may have on subse-

quent decisions. The word "best" implies the most favorable with respect to the objective function.

Strict greedy procedures have been applied to traveling salesman problems, minimal spanning tree

problerns, and knapsack problems. The greedy algorithm does what is locally best without regard

to future consequence. Therefore, for most integer optimization problems, greedy algorithms as

they were designed are merely heuristics for finding a good feasible solution [I].

Local improvement schemes form the core of most continuous optimization procedures. The

search proceeds by sequential improvement of problem solutions, advancing at each step from a

current solution to an objective function superior neighbor. These are generally called local

improvement searches in the discrete optimization arena. These are also referred to as local

optimization or neighborhood searches. The concept of the neighborhood of a point x* in Euclidean

space is defined to be an open hypersphere containing x*. Because the variables are required to be

integer, different kinds of neighborhoods are needed. In general, every neighborhood of an integer

n-vector .r* will be a set of integer vectors including x*, and in some sense near x*. The neighbor-

hood defined below is the most applicable to this discussion [4]. The unit neighborhood of x* is
defined as

R(x*) = {-rl.VJ = Xi*-I,._.i*,.r*+l}' for j = 1,2, .... ,n

Local improvement schemes can sometimes be used as a second phase in an optimization procedure

that begins with the output of the greedy procedure [25].

Garfinkel and Nemhauser [4] suggest a local optima scheme that feeds from both the greedy

procedure and the local improvement or neighborhood search idea. However, just as stated above,

at each iteration only the best alternative is chosen and examined again. This feature and

sometimes pitfall of these procedures is discussed and improved upon in the proposed algorithm

presented in section II1.

5. Nonlinear Problems

In view of the relative computational difficulties of algorithms for the solution of integer

linear programming problems, it is not surprising that the situation is, in general, even worse for

nonlinear integer programming (NLIP). While algorithms do exist for the solution of certain classes

of nonlinear integer programming problems, most have not been tested computationally and those

that have are effective only for relatively small-size problems.

13



Nonlinear problems that have separable objective functions and linear constraints have been

approached in many instances by dynamic programming techniques or implicit enumeration. The

value of a dynamic programming approach is that it yields a global optimum. The difficulty

associated with dynamic programming approaches is that multiple constrained problems lead to

multiple dimensional tables for the dynamic programming return functions, and this, by its nature,

leads to unwieldy storage and computational requirements [26]. Pegden and Petersen [27] present a

generalized implicit enumeration method for solving separable NLIP problems with linear con-

straints and report computational results. Their method uses a combination of search techniques and

linear programming approximation to gradually tighten bounds on the variables. The ordering of the

variables is an important part of their method. Cabot and Erenque [28] also present a branch-and-

bound method for solving the problem of minimizing a separable concave function over a convex

polyhedral set where the variables must be integer valued.

Another type of nonlinear integer problem that has received much attention has been a

problem with a quadratic objective function. It was first addressed by Balas [29] in 1969. He

presents an algorithm based on duality theory for both pure integer and the mixed integer case.

Balas also extends the algorithm further to include integer nonlinear problems with convex objec-

tive ruction and constraints. Other solution methods for quadratic integer programming methods

were developed later by McBride and Yormark [30] in 1980, and by Volkovich, Roshchin, and

Sergiendo [31 ] in 1986.

Most literature on nonlinear methods pointed to dynamic programming and branch-and-

bound methods, and to a lesser extent ideas from implicit enumeration and cutting plane tech-

niques. In any method, the difficulty of dealing with nonlinear problems grows even more acute

with an increase in problem size. Cooper [26] suggests that a new methodology is needed that

would be completely different in a theoretical sense.

6. Rounding Procedures

On the surface it seems possible to treat a problem of integer programming as one of

ordinary linear programming and to solve it by the standard simplex method. However, in order to

obtain an integer solution, we must either truncate or round off the solution obtained by the

simplex method. Sometimes this is adequate but, unfortunately, there are often pitfalls to this

approach. One is that the optimal linear programming solution is not necessarily feasible after it is
rounded. Another is the fact that there is no guarantee that this rounded solution will be the

optimal integer solution even if it passes the feasibility criterion. To illustrate this, the following

example is appropriate:

maximize Z = fl.rt,x2) = xl + 5xz

subject to: xi + IOA2 _ 20

x_ _< 2

x_, x2 /> 0 and integer

14



The linear programmingoptimal solution is x_ = 2, x2 = 9/5, and Z = ll. If we round 9/5 to i,

then the resulting integer solution is x_ = 2, x2 = 1, which yields Z = 7. This is far from the

optimal integer solution of Z = 10 at x_ = 0, x2 = 2 [22].

Even though rounding has its pitfalls, it has still seen much attention for its applicability to

obtain a starting feasibile solution or as a method to obtain approximations to optimal solutions.

Early work was performed by Wagner, Giglio, and Galser in this area by applying rounding heuris-

tics to obtain an approximation to an optimal solution when dealing with preventive maintenance

scheduling [32]. Giglio and Wagner also explored the idea of rounding to integer values to

approximate solutions in machine scheduling problems [33]. In both cases, the computational

results of many examples were statistically analyzed in reference to the approximate solution's

closeness to the optimal solution. With these approaches, the trade-off between decreased computa-

tion time (decreased by up to 15 percent) versus an "approximation" to an optimal solution would

have to be considered on a case-by-case basis. In certain applications, an approximate answer is

not good enough regardless of how much computer time is saved.

In 1980, the idea of rounding reemerged with an attempt by John Bartholdi to round to

integer values and obtain a solution to within a specified bound [34]. Bartholdi suggested that if

VLe is the optimal solution to the linear program, then the heuristically rounded solution is

vl, = [x,], [xl +x2]- [xl], [.rl +-¥2+X3]- [XI q-X2] .... [_nX/,.]- ['_"-lxk]

J where .v_, x2, .r_ .... are the solution variables for the continuous solution, and [xi] is the smallest

integer greater than or equal to .ri (the rounded-up value). Bartholdi's application of his method

was limited to 0-1 problems in cyclic scheduling and set covering type situations.

The simplest approach to rounding was put forth by Baum and Trotter [35] recently and

consists of rounding up in a minimization problem and rounding down in a maximization problem.

They concede that under constraints this procedure will not always give a feasible solution. This

was illustrated by the maximization example presented at the beginning of this discussion.

Taha sums up the limitations of utilizing rounding as follows:

I. If a feasible solution is obtained by rounding, one should not be under the illusion that

such a solution is optimal or even close to optimal. The rounding procedure at best may be

regarded as heuristic.

2. Any integer model having an original equality constraint can never yield a feasible

integer solution through rounding. This is based on the assumption that only basic variables can be

rounded, if necessary, and that all the nonbasic variables remain at zero level [3].

15



7. Applications

Since its inception in the 1950"s, integer programming has become the tool used by many

engineers and scientists to solve numerous real-world problems. As already mentioned, many

situations yield programming formulations with some or all of the variables required to be integer.

Included in these are scheduling, location, network, and selection problems, which appear in

industry, military, education, health, and other environments. Specific examples include problems

of facility location, resource-task scheduling, traveling salesman, capital budgeting, knapsack (cargo

loading), and production-storage-distribution [16].

Specific applications of integer programming to every-day industrial problems are also far

reaching. Integer programming techniques have been used to solve everything from electrical power

system design/expansion [36-39] to the problem of determining measurements of a given number

of sizes of apparel so as to maximize expected sales or minimize an index of aggregate discomfort

[40]. Integer programming has been used extensively in the investment portfolio selection arena to

optimize returns of stock option strategies [41,42]. It has also been used in determining a city's

optimal bus crew scheduling [43] and a power company's optimal generator maintenance schedule

[441.

_t

C. Hooke and Jeeves Direct Search

1. Theory

Conceptually, the simplest type of search method is one that changes one variable at a time

while keeping all the others constant until the minimum or maximum is reached. For example, one

method would be to set one of the variables, say .v_, constant and vary x-, Until a maximum or

minimum was obtained. Then, keeping a new value of x2 constant, change xt until an optimum for

the value of .vj is achieved, and so on. The direct search method of Robert Hooke and T. A.

Jeeves is just such a univariate sequential technique of which each step consists of two kinds of

moves. The technique alternates sequences of local univariate exploratory moves with extrapolations

(or pattern moves, as Hooke and Jeeves refer to them) [45]. The basis for the method is the intui-

tive presumption that a strategy that was successful in the past will be successful in the future.

The development of the algorithm assumes the following:

Minimize: fix) x _ E"

where x = (.,q,x2 ..... xs), E" represents n-dimensional Euclidean space, and ftx) can be either linear

or nonlinear in nature. Its procedure is illustrated with a flow diagram in figure 6. The algorithm

operates in the following manner:

Initial values for all the elements of x must be provided as well as an initial incremental

change e_. To initiate an exploratory search, f(x) is evaluated at a base point (the base point is the

vector of initial guesses of the independent variables for the first cycle). Then each variable is

16



2

START i

I Evaluate f(x) at the ]base point (x (0) initially)

Carry out type Iexploratorysearchfrom

base point.ARer lastperturbations,isf(x)

lessthanf(x(b))atoldbasepoint ?

Isperturbationsize(E:i)lessthan]

some prescribedsmallnumber?]

]

m_t

,
3

_==_ Set new base pointl
| f(x(b))= f(x) ]

Carry out type I[exploratory

search.Afterlastperturbation

f(x)lessthan f(x(b))in_ ?

Yes _ _F No

Figure 6. Information flow diagram for direct minimization using Hooke and Jeeves pattern search.

changed in rotation, one at a time, by incremental amounts, until all the parameters have been so

changed. To be specific, .v,_°_ is changed by an amount +e,, so that .,_,¢" = .vtm_+e_. lff(x) is

reduced (minimization), .v,m_+e, is adopted as the new element in x. If the increment fails to

improve the objective function, .vt "_ is changed by -e,, and the value off(x) is again checked as

.r, m' is left unchanged. Then .v-,m> isbefore. If the value o1"/{.r) is not improved by either .r,m'+e,,

changed by an amount e2, and so forth, until all the independent variables have been changed to

complete one exploratory search. For each step or move in the independent variable, the value of

the objective function is compared with the value at the previous point. If the objective function is

improved for the given step, then the new value of the objective [unction replaces the old one in

the testing. However, if a perturbation is a failure, then the old value ofjqx) is retained.

After making one (or more) exploratory searches in this fashion, a "pattern search" is made.

The successfully changed variables (i.e., those varible changes that decreased j(x)) define a vector

in E" (,-dimensional Euclidean space) that represents a successful direction for minimization. A

series of accelerating steps, or pattern searches, is made along this vector as long as f(x) is

decreased by each pattern search. The magnitude of the step for the pattern search in each coor-

dinate direction is roughly proportional to the number of successful steps previously encountered in

each coordinate direction during the exploratory searches for several previous cycles. Therefore, the

pattern moves increase in length as long as the search proceeds in the same direction. Furthermore,

the exploratory sequences become increasingly farther apart as long as the search proceeds in the

same direction. Exploratory moves and pattern moves are illustrated graphically in figure 7. An

17



f
J
v

X1

J

Y

Po / l

Figure 7. Hooke and Jeeves exploratory and pattern moves [46].

exploratory search conducted after a pattern search is termed a type II exploratory search, and the

success or failure of a pattern move is not established until after the type II exploratory search has

been completed.

Iff(x) is not decreased after the type II exploratorysearch, the pattern search is said to fail,

and a new type 1 exploratory search is made in order to define a new successful direction. If the

type I exploratory search fails to give a new successful direction, ei is reduced gradually, until
either a new successful direction can be defined or each ei becomes smaller than some preset toler-

ance. Failure to decrease fix) for a very small e,. indicates that a local optimum has been reached.

Three basic tests must be satisfied for the sequence of searches to terminate. The first test occurs

after each exploratory search and pattern search--the change in the objective function is compared

with a prespecified small number. If the value of the objective function did not vary by an amount

more than the specified number from the previous base value of the objective function, the explora-

tory search or pattern search is considered a failure. In the absence of such a failure, a second test

is made to determine if the objective function was increased (a failure) or decreased (a successful

search). This second test ensures that the value of the objective function is always being improved.

The third test is conducted after an exploratory search failure on the fractional change in _i. The

search can terminate if the change in each variable is less than some prespecified number.

2. Hooke and Jeeves Example

The following is a nonlinear maximization example that illustrates the Hooke and Jeeves

method:

maximize Z = flxn,x2) = 1 / ((xl + I) 2 q-X2 2)

.rIm = (2, 2.8) ei = (0.60, 0.84) fix (°)) = 0.05938

v_

18



Type I ExploratorySearch

Variable _i

.v_ = 2.00+0.60 = 2.60

.v_ = 2.00-0.60 = 1.40

x_ = 2.80+0.84 = 3.64

.v_ = 2.80+0.84 = 1.96

f(2.6, 2.8) = 0.048 failure

f(1.4, 2.8) = 0.073 success

f(1.4, 3.64) = 0.052 failure

f(l.4, 1.96) = 0.104 success

x _l_ = (I.4, 1.96)

Type I was a success. Therefore, new base point = (!.4, 1.96).

A --, Pattern Search is made from (I.4, 1.96) according to

Xi(k _ I_ = 2._.i(k)_xi(b)

where xi a'_ is the old base x vector, which is now x (°_

.v_2_ = 2(I.4,1.96)-(2, 2.8)

.v_2_ = (0.80, 1.12)

f(0.80, 1.12) = 0.22

Now a type II exploratory search is made, with success or failure based on comparison to

t(0.8, 1.12) - 0.22.

Variable e,

x_ = 0.80+0.60 = !.40

.vl = 0.80-0.60 = 0.20

.v. = 1.12+0.84 = 1.96

.w = 1.12-0.84 = 0.28

f(l.40, 1.12) = 0.14 failure

f(0.20, 1.12) = 0.38 success

f(0.20, 1.96) = 0.19 failure

f(0.20, 0.28) = 0.67 success

.v_3_ = (0.20,0.28)

i9



To determine if the pattern search A was a success, f(0.20,0.28) is compared to f(l.4,1.96),

i.e., 0.67: 0.104. Therefore, the pattern search was a success and the new base point is

.v_3_ = (0.20,0.28)--, f(0.20,0.28) = 0.67

and the old base point is now

.r_ll = (I.4,1.96)--,f(1.4,1.96) = 0.104

B --, Since success has occurred, we proceed with another pattern search.

X (4) = 2x(3)-x (_)

.vc-_ = 2(0.20,0.28)-(!.4,1.96)

.rTM = (- 1,- 1.4) f(- 1,- !.4) = 0.51

A type II exploratory search is now performed on this new point to determine if the pattern move

was successful.

Variable e;

.v_ - i+0.6 = -0.40

.r_ = -I-0.6 = -I.6

.x-, - 1.4+0.84 = -0.56

f( - 0.4, - I .4) = 0.43 failure

f(- 1.6,- i.4) = 0.43 failure

f(- 1,-0.56) = 3.18 success

.v{5} = (-1,-0.56)

To determine if the pattern search B was a success, fl- I,-0.56) = 3.18 is compared to

/t0.20,0.28) = 0.67. Therefore, the pattern search is a success as 3.18 > 0.67 and the new base

point is

.v15_ = (-1,-0.56)--,f(-I,-0.56) = 3.18 ,

and the old base point is

2O



.v13.I -- (0.20,0.28)--,f(0.20,0.28) = 0.67

C --, Sincesuccesshasoccurred,we proceedwith anotherpatternsearch.

.vc¢,1= 2(.vl-s_)-.r_3_

.x_¢''= 2(- I,-0.56)-(0.20,0.28)

.xf¢'_= ( - 2.20.- 1.4) --,.[(-2.2,- 1.4) = 0.29

A type II exploratory search is now performed on this new point to determine if the pattern move

was a success.

Variable ei

.q = -2.2(1+0.60 =

.v, = -I.40"0.84 =

- 1.60 --,.f( - 1.6,- 1.40) = 0.43 success

- 0.56 --, ./( - I .6, - 0.56) = I .49 success

.v_v_ = (-1.6,-0.56)

To determine if pattern search C was a success..1(- 1.6,-0.56) = 1.49 is compared to .v_s_

(current base point) = (-I,-0.56) --,.[Ix ¢5_) = 3.18. Therefore 1.49 < 3.18, and the pattern

search was a failure. Consequently we would go back to .rc5_ = (- 1,-0.56) and again initiate a

type I search. The restart occurred due to the failure of the pattern search even though there were

successes in the .x._TJtype II search. When the stage is reached in which neither the type I explora-

tory search nor the pattern search (together with a type II search) has a success in any coordinate

direction, both are said to fail and the perturbation _ is reduced, Bazaraa and Shetty suggest by a

factor of 0.5 [46]. Therefore, a new _i would be (0.60/2,0.84/2) which is equal to (0.30,0.42). In

this example the optimal solution ultimately converges to .v_ = - I, x-, = 0, and f(x) --, _.

3. Improvements, Advantages, and Disadvantages

Two suggestions from Gottfried and Weisman [471 that can improve the algorithm are as
tollows:

1. The algorithm can be speeded up by "remembering" the direction of improvement for

each x; in the previous exploratory sequence and then applying the same strategy during current

exploration. For example, if the function shows improvement by decreasing given x; to .v, - e,,

then the next exploratory move should first decrease .v, to x; - _i and then increase .v, to x; + _,

only if the move to x, - e; was not a success.

21



2. Improvement also can be obtained if one varies the magnitude of each _i separately,

depending on the history of successes or failures with respect to the exploratory moves in each

direction.

The algorithm's main feature consists of following "ridges" and "valleys." The pattern move

can take long steps in the assumed direction of valleys, and the exploratory moves find the way

back to these valleys if a pattern move has climbed out of them. Although the method lacks

mathematical elegance, it is a highly efficient optimization procedure. It is easily programmed and,

as rnentioned earlier, is particularly well suited to functions that exhibit a straight, sharp ridge or

valley.

Before one regards this method as the ultimate in direct search techniques, it should be

noted there is a shortcoming. The method may sometime fail to produce any further improvement

in a function that contains tightly curved ridges or sharp-cornered contours while still far from a

maxinaum or minirnum [48].

III. PROPOSED ALGORITHM - AN IMPROVED EXPLORATORY SEARCH TECHNIQUE

FOR INTEGER PROGRAMMING (IESIP)

A. Approach

1. General

By using the best features of the greedy procedure, neighborhood search, and the Hooke

and Jeeves type 1 and type II exploratory searches, coupled with modifications and efficient round-

ing procedures, one can develop an improved algorithm that will often prove superior to the

established branch-and-bound procedure. This new procedure will be described along with a flow

diagram showing the steps involved in the solution process. Also described are the necessary

modifications to existing procedures that make this new algorithm an improvement over others.

Section B will describe some of the more intricate details of the procedure such as the rounding

procedure and stopping rule,

r_

2. Solution Procedure and Modifications Required to Existing Schemes

The IESIP procedure begins, just as does the fractional-cut and branch-and-bound methods,

with a continuous optimal solution obtained from simplex (linear) problems. Next, the continuous

solution is rounded to an integer value according to the procedure detailed in section B.I. Once the

rounded integer solution is obtained and shown to be within the constraint limitations, the next step

employs some of the ideas of both the Hooke and Jeeves procedure for nonlinear problems and the

greedy procedure discussed earlier.

The IESIP algorithm begins by utilizing an idea borrowed from the Hooke and Jeeves

procedure. The first step involved in the Hooke and Jeeves procedure is a univariate exploratory

search around the starting point.

22



×2

3

2
• t "N

I®
/

(i) J

0 1 3 Xl

I \

I®
I

2

Figure 8. Hooke and Jeeves exploratory search progression.

Each time the value of the objective function increases (maximization problem) using this

procedure, one keeps the value of the changed variable and moves on to the next variable, increas-

ing it and then decreasing it to check for additional improvement. This results in the movement as

shown in figure 8 for a two-variable problem. This idea works well with continuous type problems,

but in the case of integer problems, this technique will tend to "miss" the optimal solution. This is

especially apparent in the cases where the optimal integer solution is not as close to the continuous

solution as one would expect. The following example shows the dilemma created on a two-variable

problem where the Hooke and Jeeves exploratory search is applied directly to the problem without
modifications:

maxinaize Z = f(xi,x2) = xl + 5.v2

subject to: .vl + IOx2 <_ 20

" V ] { 2

.vt,.v2 >! 0 and integer

In applying the Hooke and Jeeves procedure a _i is needed to increment the variables in a

univariate manner. Since this is an integer problem, the logical value for _i is an integer value of

one or two if one starts with all integers in the solution. This is accomplished by first rounding the

continuous solution of.112.0,1.8) = 11 to f( I .0,1.0) = 6. The details of the rounding scheme

en-_ployed and the justification for rounding to (I .0,1.0) rather than (2.0, 1.0) is discussed later in

section B. 1. Type I exploratory search yields

23



Variable Ei

x_ = 1+1 = 2

.r_ = !+1 = 2

x2 = 1 - 1 = 0

f(2,1) = 7 (success)

f(2,2) = constraint failure

f(2,0) = 2 (failure)

Therefore, the new base point is (2,1).

Pattern Search Fails

Type I search is performed again from (2,1). It also fails; therefore, with strict application,

we reach a false optimum off(2,1) = 7, instead off(0,2) = !0, the actual integer optimum. Note

that the x_ value of 2 is kept once it meets successes at a value of 7, thereby not allowing the true

solution to emerge as (0,2).

In order to overcome this problem, we must modify the exploratory search so that it does

not rule out certain increasing (maximization) directions. This is accomplished by taking an idea

from the greedy procedure and modifying it. Instead of selecting just the best alternative in our

type I exploratory search, we will first change the _ value from a continuous value to an integer

value of one. We then univariately examine the neighborhood around the rounded feasible solution

to determine all feasible candidate integer solutions. Using the same example as shown above, this

gives exploratory search results as shown below and in figure 9.

Variable _i

.r_ = 1+1 = 2 f(2,1) = 7 (feasible)

x_ = 1-1 = 0 f(O, I ) = 5 (feasible)

.r_ = 1+1 = 2 f(1,2) = constraint failure

x2 = I-! = 0 f(l,O) = 1 (feasible)

This then allows for type II exploration of each of these candidate feasible points. The type

II exploration is similar to the type I in its univariate nature, but after examining all the feasible

solutions from the type I search, only the best (largest objective function value for a maximization

problem) is chosen to be examined further. In other words, each neighborhood of each feasible

region is examined and only the best of all solutions from all neighborhoods is chosen to be

examined further.

Each time a variable is incremented or decremented, the solution must be evaluated against

the set of constraints. If one constraint fails, that variable is perturbated by a value of "'1" in the

other direction or the algorithm moves on to the next variable, if both directions have been

24



X2

3

2

:Infeaslble Polnt

(_= Feoszble Poznt

A
I
I
I

I
I
I

s "7

,)

f

2 3 Xl

Figure 9. Modified type I exploratory search.

examined. This modification to the Hooke and Jeeves type I search was necessary to accommodate

integer programming problems which are by their nature constrained. The Hooke and Jeeves proce-

dure was originally designed for use on nonlinear unconstrained problems.

Another modification pertains to the order involved in incrementing and decrementing the

variable. For maximization problems, the algorithm will first increment the variable by "!" and

check the constraints, then it will decrement the variable by "1 ,'" check constraints, and move on

to the next variable. For minimization problems, the algorithm will first decrement the variable by

"1"" and check constraints, then increment the variable by "'1,'" check the constraints, and move on
to the next variable.

This order involved in checking variables is important for the following reason: if all the

variables in the objective function have positive coefficients, then the value obtained by the + I

increment with maximization or - 1 decrement in minimization, will always be better than the

succeeding - ! and + I changes, respectively. Therefore, if the problem has all positive objective

function coefficients, then the algorithm proceeds on to the next variable without checking the

second increment (+ min, - max) if the first incrementation was successful. This computation

saving scheme, of course, is only valid if used for type II searches. Type I searches identify all

feasible candidates, both those obtained from + 1 and - I operations, disregarding the coefficients

of the objective function. This computation saving feature can potentially save a tremendous

amount of time, especially if applied to problems containing many variables.

Once the best solution has been obtained from all the feasible neighborhoods, a type 1I

search is applied. Each time, the best solution is picked from this type II search and searched for

25



further improvement. This is continued until the "'best" solution from a type II search is the same

as the solution which initiated that particular search. At this point all the other feasible points on

this neighborhood search are also examined. If their examination reveals a point that shows

improvement over their respective feasible points, then it is examined by a type II search also. If

not, then the algorithm terminates with the optimal solution being the current best value.

The following definitions, procedure outline, and flow diagram (fig. 10) describe the basic

steps involved in the improved explorato D' search technique:

Definitions

Type I Exploratory Search: This utilizes the best features of the greedy procedure and

the Hooke and Jeeves type I exploratory search by combining them into one search scheme. This

search produces a list of feasible solutions from the initial rounded integer point.

Type II Exploratory Search: This is similar to the type I search except that only the best

solution is kept for further searching rather than all feasible points.

Parent Point: This defines a best point in a search, that if chosen to be examined will

generate a sequence which returns to the present point. In other words, it is a "parent" to the

current search and will only loop back on itself.

Seed Point: This defines the point that is currently being searched or explored.

Solution Steps for IESIP

Step 1: Round the optimal continuous solution to a feasible integer solution. Verify that

the solution meets constaints; if it does not, then the term with the highest coefficient in the failed

constraint is reduced by a value of one (maximization).

Step 2: Initiate the type I exploratory search to determine all feasible candidates for further
examination.

Step 3: Initiate type II exploratory search of each feasible point found in step 2.

Step 4: Take the best solution(s) of all these searches and initiate another type lI explora-

tory search on this point or points.

Step 5: Taking the best solution obtained in this search, check to see if it (they) is (are) a

"parent" point(s). If not, go back to step 4. If yes, then proceed to step 6.

Step 6: Check to see if this is the first occurrence of a parent point; if it is, then go to

step 7. If it is not, then choose the largest (maximization problem) nonparent point value that is an

improvement over its respective seed point (the first seed point being the rounded continuous

optimal). If there are none, then stop--the best point so far is optimal.

26



Step 7: Perform a type II search on all remaining feasible nonparent points. If any of

these results is an improvement over its respective feasible points and is not a parent point, then go

back to step 4. If there are none, then stop--the best point so far is optimal.

Note: In step 6, if there are multiple parent occurrences in multiple searches, then only the

feasible nonparent solutions from the searches that contain a parent point are examined.

CONTINUOUS OPTIMAL
FROM SIMPLEX

[ APPLYROUNOINGPROCEDUREI

IDDT SATISFIED

[ APPLY UNIVARITE ITYPE IEXPLORATORY SEARCH

TYPE II EXPLORATORY SEARCH[,,

ON ALL FEASIBLE SOLUTIONS[",

ITAKE BEST OF ALL SOLUTIONS l
OBTAINED IN TYPE II SEARCHES I

i

I MODIFY ROUNDED VALUE I_ACCORDING TO RULE

NO

APPLY TYPE II SEARCH TO l
THIS BEST SOLUTION POINT PERFORM TYPE II SEARCH
AND PICK THE BEST VALUE ON REMAINING FEASIBLE

SOLUTIONS

POINT

Figure I0. IESIP descriptive flow diagram.

27



3. Advantages in Using the Proposed Algorithm

The most significant advantage of this procedure over other integer programming techniques

is that it primarily involves adding and subtracting "1'" from the elements of an n-dimensional vec-

tor. The only other arithmetic operation that is necessary is multiplying the candidate solution

vectors by the respective coefficients in the constraints and objective function.

Adding to this procedure's list of advantages is its lack of having to solve simplex itera-

tions. When using a fractional-cut or branch-and-bound technique, one has to solve a new simplex

problem each time a new constraint is added to the tableau. From a computational complexity

standpoint, an iteration of dual simplex with four or five variables and four or five constraints is a

laborious nightmare. This procedure eliminates that task completely.

Another advantage of this procedure is that it employs the better aspects of a proven non-

linear optimization technique (Hooke and Jeeves) and a well-established heuristic procedure

(greedy). It is further improved by the fact that the type I search avoids the greedy procedure

pitfall of taking only the one best solution in a search. The following example shows how if a

greedy procedure were applied in place of the modified type I exploratory search, then the resulting

solution would not be optimal:

maximize Z = fl.v_,x-,) = 4,000xl +7,000x-,

subject to: 1,200.vt + 2,000x2 _< 6,000

25,000.v_ + 80,000x2 _< 200,000

.v_,x2 /> 0 and integer

r_

Rounded Solution --, fll,l) = I!,000

Type I exploratory search on (1,1) yields

Variable e;

.v_ = I+1 = 2 ./(2,1) = 15,000 (feasible)

xl = I-I = 0 f(0,1) = 7,000 (feasible)

.v-, = I + I = 2 ./'(!,2) = 18,000 (feasible)

.v2 = 1-I = 0 ,f(l,0) = 4,000 (feasible)

Therefore, the feasible candidate solutions are (2,1), (0, 1), (t ,2), and (I ,0). If we applied an

tnunodified greed}' procedure, we would pick ill,2) = 18,000 and examine it further. This would

give the following:

28



Variable e,

.v_ = 1 + 1 = 2 ,fl2,2) = fails constraint

xn = I -I = 0 f10,2) = 14,000 (feasible)

.v2 = 2+1 = 3 ill,3) = fails constraint

.vz = 2-1 = 1 ill,I) = I1,000 (feasible)

Choosing the best solution yields f(O,2) = 14,000. Examining the point (0,2), we have

Variable e,

.vl = 04- I = 1

.w = 2+1 = 3

.w = 2-1 = I

ill,2) = 18.000 (feasible)

,1(0.3) = fails constraint

.f(0,1) = 7,000 (feasible)

The largest value is,ill,2) = 18,000, but this is the first parent point (i.e., if chosen it will

generate a sequence which returns to the present point). Therefore, our rule says to examine all

other nonparent point feasible solutions of this search. The point ri0,1) = 7,000 is the only

remaining point: therefore, it is examined.

Variable _,

.vl = 0+1 = 1 ./(I.I) = 11,000 (feasible)

.v2 = I + I = 2 ./(0,2) = 14,000 (feasible)

x2 = I-I = 0 ./(0,0) = 0 (feasible)

Both (I,I) and (0.2) are parent points and./{(),()) = 0 is not an improvement over 7,000, therefore,

we would conclude the procedure at this point with a solution oi./'II,2) = 18,000 (best so far).
This is not optimal. If we apply the type I exploratory search as described, we then would examine

all three feasible candidates. An examination of the feasible point (2,1) gives a best solution of

Ii3.1) = 19,000. and after two more type II explorations, this point is improved again to an

optimal of./15,0) = 20,000. This example is shown in more detail in the next part of this section.

B. Other Details of the Algorithm

1. Rounding to Discrete Starting Solution

Considering the difficulties encountered with rounding continuous optimal solutions to

integer values, this procedure will utilize the simple approach as discussed in section II by Baum

and Trotter [35]. A rounded integer value is required of this algorithm since all of its subsequent

steps require integer values and manipulations. Wismer and Chattergy in their discussion of round-

ing suggest that rounding is especially applicable when the optimal solution will be insensitive to a

change of plus or minus one, e.g., when the solution is a large number [491. This algorithm uses
the idea of Baum and Trotter and extends it to cases where constraints are involved.

29



The roundingstepof the algorithmproceedsin the following manner:first, in a maximiza-
tion problem, the continuousoptimal solutionwill be roundeddown to the next lowestinteger
values. If a value is alreadyan integer, it will be roundeddown by an incrementof one to the
next lower integervalue (e.g.. (6,3.4) would be roundeddown to (5,3)). In someof the test
problemsfalseoptima were encounteredwhen the integervalues in continuoussolutionswere not
reduced(or raised) to the next lower (or higher) incrementof "'1." Secondly,a constraintcheck is
perl\_rmedto verify that the roundedvalue falls within the constraints.If a roundedpoint fails a
constraint, then the entry with the highestcoefficient in the failed constraintis loweredby a value
of 1. The procedurefollows the sameline of reasoningwhendealingwith a minimizationproblem
except that the roundingwill be up insteadof down andthe variable will be raisedby "'!'" on a
constraintfailure ratherthan lowered.

This approachworks well with maximizationproblemscontainingpositive decisionvariables
and "'_<"type constaints,or on minimizationproblemswith "_>" type constraints.Problemsnot in
theseforrnswill sometimesrequireextra effort in comingup with a roundedstartingsolution. The
computerprogrampresentedat the end of this sectionwill allow the user to roundthe continuous
optimal solution independentof the programif so desired.

"'Equalto" constraintsarea problemfor roundingin that they requirea uniquesolution to
even feasiblystart the procedure.The problemsof "'equalto" constraintswill be examinedin sec-
tion V when discussingrestrictionsof the algorithm.

L

2. Constraint Involvement

Integer programrning problems, by their very, nature, involve constraints or restrictions on

their solutions. The Hooke and Jeeves exploratory search was designed for unconstrained problems:

therefore, a step had to be included in IESIP for verifying that the candidate solution meets the

constraints. Some of these problems are easy to check, but others are more laborious. For instance,

when exploring around the point "'0,'" and by using a value of - I, we automatically trigger a con-

straint failure since this violates the non-negativity requirement found in almost all integer pro-

gramming problems. However, for other points, the algorithm must accommodate a left-hand-side

constraint value calculation at the check point with a comparison to the respective right-hand-side.

if it passes the constraint requirement, the algorithm moves on to the next constraint. If at any
time the constraint check fails, then the candidate solution at those points is said to fail. These

constraint checks are conducted after eve_univaria{e search step performed on a variable and dur-

ing the rounding procedure. Therefore, with this in mind, it is easy to see that the computational

complexity and time required to utilize this algorithm is going to largely depend on the number of

constraints involved in a particular problem.

!

3. Stopping Rule

The algorithm stops when the only points produced from a search are parent points together

with points that are constraint failure points or points that show no improvement over the current

seed value. The key to determining when this occurs is the recognition and storage of the "parent"

points that have been previously examined, and knowledge of the origin of the present point being

examined (i.e, did it come from one of the parent points?).

30



In the example presented in section C, the following initial rounded solution will give the

associated feasible points after a type I exploratory search:

Initial --> f(l,l) = 11,000

f12,1 ) = 15,000 (feasible)

flO,l) = 7,000 (feasible)

f(1,2) = 18,000 (feasible)

ill,0) = 4,000 (feasible)

After examining these feasible points with a type II search, the best solution came from examining

(2,1) and was (3,1) with an objective function value of 19,000. Therefore, we say that (2,1) was

the parent point for the current best solution of (3,1). Going further, we find that if the neighbor-

hood around (3, I) is examined, it reveals the following:

f14,1) = constraint failure

f12.1) = 15,000 (feasible)

fl3,2) = constraint failure

f13,0) = 12,000 (feasible)

The point (2,1) is the best solution from this search, but it is recognized as the parent to

the current search and is therefore not examined. Examination of this point would generate a

sequence which returns to the present point. This is called by the procedure the "first criterion for

stopping."

Also shown as a feasible point is the point f13,0) = 12,000. The procedure therefore

examines the neighborhood around this point for improvement over it. If there had been other feas-

ible points besides (3,0), they would also have been examined.

Searching f13,0) = 12,000 yields

Variable ei

.x_ = 3+ 1 = 4 f(4,0) = 16,000 (feasible)

x2 = 0+1 = I f13,1) = 19,000 (feasible)

.v2 = 0-1 = -1 f(3,+l) - constraint failure

If the procedure is fortunate and there are no other feasible points other than the "parent-

loop" point, then the algorithm ends here with the current best solution as the answer. Therefore.

in the example above f(4.0) = 16.000 is examined (since f(3.1) = 19.000 is a parent point)

revealing the following:

Variable _, f14,0) = 16,000

.vl = 4+1 = 5

x-, =0+1 = I

x-, = 0-1 = -1

f15,0) = 20,000 (feasible)

f14,1) = constraint failure

f(4. - 1) = constraint failure

31



This allows us to pursue the point (5,0) since it is the best value and not a parent-loop point.

Upon examining (5,0), we find the following:

Variable e i f(5,0) = 20,000

.rf = 5+1 = 6

.vl = 5-1 = 4

x, =0+I = 1

.v, = 0-1 = -I

f16,0) = constraint failure

f(4,0) = 16,000

f(5,1) = constraint failure

f(5, - !) = constraint failure

Since (4,0) is the only feasible point and it is the parent point for the current search, the algorithm

has no other feasible points to examine and therefore stops. It should also be noted that more than

one parent point could be found in a search and would also not need to be reexamined.

In summary, the stopping rule consists of the following two criteria:

1. The best solutions from a search are parents to the current search and will therefore

result in a loop-back on themselves if examined.

2. If criterion (1) is met and there are no other feasible points in that search that are

improvements over their current seed point, then the procedure stops. The current best solution is

chosen as the optimal.

C. Example Problems

The following example is presented in detail to illustrate the procedure. It is a particularly

interesting problem in that it is one of the class of problems where the optimal integer solution

(5,0) is relatively far removed from its optimal continuous solution of (1.739,1.956). The example

is taken from Claycombe and Sullivan [50]. The first part of the example solves the problem using

the IESIP procedure. Following the solution is a graphic representation of the solution process

showing its progress from rounded initial interger solution to the final optimal value. Another

example with four variables is also provided after the graphic.

Two Variable Example

An excursion company is considering adding small boats to its fleet. The company has

$200,000 to invest in this venture. At present, there is an estimated maximum demand of 6,000

customers per season for these tours. The company does not wish to provide capacity in excess of

the esimated maximum demand. The basic data are given below for the two types of available

boats. The company will make an estimated seasonal profit of $4,000 for each boat of type A and

$7,000 for each boat of type B. How many boats of each type should it purchase?

Type A Type B

Capacity (customers/season) 1,200 2,000

Initial Cost (S/boat) 25,000 80,000

32



This translates into the following integer linear programming problem:

maximize Z = fl.vl,x2) = 4,000xt + 7,000x2

subject to: 1,200,q 4_ 2,000x2 _< 6,000

25,000:q +80,000x,, _< 200,000

xt,.v-, > 0 and integer .

Step 1: The continuous optimal solution is given as (I.739,1.956) which gives a value of

$20,648 to the objective function. Applying the rounding rules to this value, we have a rounded

solution of (I, I) = $11,000. We then check this rounded value against the constraints and find it

to be feasible.

Step 2: Perform a type I exploratory search around the rounded initial solution. After each

increment or decrement of a variable, the constraints are checked to verify feasibility.

Variable _i fl I, I ) = I 1,000

.rT = I+I = 2

.rl = I-i = 0

.r, = 1+1 = 2

x2 = I - I = 0

f12, I) = 15,000 (feasible)

riO, I ) = 7,000 (feasible)

fli ,2) = 18,000 (feasible)

fl 1,0) = 4,000 (feasible) .

All points are feasible; therefore, the next step is to proceed on to the type II examination of each

of the neighborhoods around these feasible points.

Step 3: Examine the neighborhoods around each of the feasible points with a type II

exploratory search. After each increment or decrement of a variable, the constraints are checked to

verify feasibility.

Variable ¢; f(2, I ) = 15,000

x_ = 2+1 = 3

x2 = I+1 = 2

x2 -_---I-1 =0

f(3,1 ) = !9,000 (feasible)*

fl2,2) = constraint failure

f12,0) = 8,000 (feasible)

Variable Ei rio, i) = 7,000

x_ =0+1 = i

x2 = i+1 = 2

fl 1,1) = ! 1,000 (feasible)

f10,2) = 14,000 (feasible)

aa



Variable ei f(1,2) = 18,000

xj = 1+1 = 2

xl = 1-1 =0

.r2 = 2+1 = 3

.r2 = 2- I = I

fl2,2) = constraint failure

f10,2) = 14,000 (feasible)

ill,3) = constraint failure

fl I, 1) = I 1,000 (feasible)

Variable e/ ill,0) = 4,000

.rl = 1+1 = 2

.r2 = 0+1 = !
f12,0) = 8,000 (feasible)

ill, I) = 11,000 (feasible) .

Step 4: Take the best solution point found in step 3 (*) and initiate a type II exploratory
search on this point.

Variable ej f13,1) = 19,000

xl =3+1 =4

x1=3-1=2

x2 = 1+! = 2

x2 = 1-1 =0

f14,1) = constraint failure

f(2,1) = 15,000 (feasible)

fl3,2) = constraint failure

f13,0) = 12,000 (feasible) .

Step 5:
which initiated

Step 6:

Therefore, the

Check to see if the best

that search (parent point).

In this case, (2,1) is the

remaining feasible point is

solution obtained in step 4 is the same as the solution

If not, proceed to step 4 again. If yes, go to step 6.

parent point and the first occurrence of such a point.
only f13,0) = 12,000.

Variable ei f13,0) = 12,000

xl = 3+1 = 4 f(4,0) = 16,000 (feasible)

xl = 3-I = 2 f(2,0) = 8,000 (feasible)

x2 = 0+1 = 1 f13,1) --- 19,000 (feasible)

x2 = 0-I = -I f13,-l) = constraint failure .

Step 7: Perform type II search on each of the other feasible points. If any of these results

is an improvement over its respective feasible points and is not a parent point, go back to step 4.

If there is none, then stop--the current best is the solution. The best point is (3,1), is a parent
point, and should not be examined.

In this case, the point (4,0) is the next best point and an improvement over 12,000, and it

is also not a parent point. Therefore, step 4 is performed again on the new point (4,0).

.Variable ei f14,0) = 16,000

xl = 4+1 =5

.12 = 0+i = 1

x2 = 0-1 = -1

f(5,0) = 20,000 (feasible)

f(4, I) = constraint failure

f14,- 1) = constraint failure .

34



Best point is f15,0) = 20,000 and not a parent point. Step 4 is invoked again.

Variable ei f(5,0) = 20,000

Xl = 5+1 = 6 f16,0) = constraint failure

xl = 5-I = 4 f(4,0) = 16,000 (feasible)

x2 = 0+! = 1 f(5,1) = constraint failure

x2 = 0-1 = -I f(5,- l) = constraint failure .

(4,0) is the best and only feasible point at this search. According to step 6, since this is a parent

point and there are no other improving feasible points from this search, the solution is the best one

so far; that is, f(5,0) = 20,000. This example is shown graphically in figure !1.

Four Variable Example

maximize Z = f(x I ,X2,X3,X4) = 4xj + 5x2 + 9x3 + 5X 4

subject to: x_ +3x2+9,_+6x4 _< 16

6xj +6x2+7x4 _< 19

7x_ + 8x2 + 18x3 + 3x4 _ 44

.rl,x2,x3,x4 I> 0 and integer .

Continuous Optimal Solution = fl2.8652,0,1.2871,0.2584) = 24.337.

Step 1: Rounded feasible starting point = f12,0,1,0) = 17

Step 2:

Variable _i f(2,0, I ,0) = 17

xl =2+1 =3

x_ = 2-1 = 1

.r, = 0 + 1 = 1

x, = 0-1 = -I

x3 = I+1 = 2

x3 = I-I =0

x4 = 0+l = I

x4 = 0-1 = -1

f(3,0, I ,0) = 21 (feasible)

fl 1,0, I ,0) = 13 (feasible)

f12, !, 1,0) = 22 (feasible)

f12,-l,l,0) = constraint failure

f(2,0,2,0) = constraint failure

f12,0,0,0) = 8 (feasible)

f(2,0,1,1) = constraint failure

f12,0,1,-l) = constraint failure.

Four feasible points are now examined by step 3.

35



N
X

0
I--

t

o
L.

m

6

[-.,

36



Step 3:

Variable

.rl = 3+

.rl = 3-

.r 2 = 0 +

.!.-_ = O--

.r._ = I+

x3 = I-

3:.1=0+

.r4 = O--

Variable

.rl = I+

X I = ] --

.r_ = 0 +

.r_ = 0-

.r3 = I +

X3 = ]--

.r4 = O+

.r4 = O--

Variable

.rl = 2+

.rl = 2-

.r_ = l +

.r, = I--

.r3 = I +

.r3 = I--

.r4 = O+

-r4 = O-

Variable

.rl = 2+

xl = 2-

x2 = 0 +

•r2 = O--

x 3 = 0 +

X3 = O--

X 4 = O+

X4 = O--

IEi

=4

=2
= I

=2

=0

= I

---_ --3

Ei

=2

=0

= I

= --I

=2

=0

= I

= --!

Ei

=3

= 1

=2

=0

=2

=0
= 1

Ei

=3

= 1

= 1

= 1

= --I

= 1

= --1

f13,0,1,O) = 21

f14,0,1,O) = constraint failure

f12,0,1,O) = 17 (feasible)

fi3,1,1,O) = constraint failure

f13,-I,i,O) = constraint failure

fl3,0,2,0) = constraint failure

f13,0,O,O) = 12 (feasible)

f13,0, 1,1) = constraint failure

f13,0,1,-l) = constraint failure .

f(I,O,l,O) = 13

f12,0,1,O) = 17 (feasible)

riO,O,l,O) = 9 (feasible)

fll,l,l,O) = 18 (feasible)

fll,-I,l,O) = constraint failure

fll,0,2,0) = constraint failure

fll,O,O,O) = 4 (feasible)

fll,O,l,l) = 18 (feasible)

fl I ,0, I,-I) = constraint failure .

f12,1,1,O) = 22

f13,1,1,O) = constraint failure

fl I, I, 1,0) = 18 (feasible)

fl2,2,1,0) = constraint failure

f12,0, 1,0) = 17 (feasible)

fl2,1,2,0) = constraint failure

f12,1,O,O) = 13 (feasible)

f12, I, I, I) = constraint failure

fll,O,I,-I) = constraint failure .

f12,0,O,O) = 8

f13,0,O,O) = 12 (feasible)

fll,O,O,O) = 4 (feasible)

f12,1,O,O) = 13 (feasible)

f12,-I,O,O) = constraint failure

f12,0,1,O) = 17 (feasible)

f12,0,-I,O) = constraint failure

f12,0,O,i) = 13 (feasible)

f12,0,O,-I) = constraint failure .

37



The best solutions of all neighborhoods examined above are the points (1,1,1,0) and

(I,0,1,1,), both of which result in objective function values of 18.

Variable ei f(l, !, ! ,0) = !8

X I

X I

X_ _ m

X 3 = +

X 3 = _

x4 = 0 +

x4 = O-

+ =2

-- _-_ 0

+ = 2

=0

=2

=0

= 1

f(2,1, ! ,0) = 22 (feasible)

riO, 1, 1,0) = 12 (feasible)

f(1,2, ! ,0) - 23 (feasible)

fl 1,0, 1,0) = 13 (feasible)

fl I, ! ,2,0) = constraint failure

fl I, 1,0,0) = 9 (feasible)

fli,l,l,1) = constraint failure

f(I, 1,1 ,-I) = constraint failure

Variable Ei ill,0,1,1) = 18

.r_ = !+

Xl = l--

x2 = O+
x,--O-

x3 = l+

X 3 = I-

.r 4 = 1+

x4 = l--

=2

=0

= !

= --]

=2

=0

=2

=0

f(2,0,1,1) = constraint failure

f(0,0,1,1) = 14 (feasible)

f(l, I, I, 1) = constraint failure

fll,-l,l,l) = constraint failure

f(1,0,2,1) = constraint failure

fl1,0,0, I) = 9 (feasible)

f(1,0,1,2) = constraint failure

f(1,0, 1,0) = 13 (feasible) .

The best point found in all these neighborhoods is f(I ,2,1,0) = 23, and it is not a parent point.

Variable ei f(1,2, I ,0) = 23

x_ = I+1 = 2

.rl = I-I = 0

x, = 2+1 = 3

.r2 = 2- ! = I

x3 = 1+1 = 2

x3 = 1-1 =0

x4 =0+1 = 1

.r4 = 0-1 = -1

f(2,2,1,0) = constraint failure

f(0,2,1,0) = 19 (feasible)*

f(l,3,1,0) = constraint failure

f(I, 1, 1,0) = 18 (feasible)

f(1,2,2,0) = constraint failure

f(1,2,0,O) = 14 (feasible)

ill,2,1,1) = constraint failure

f(l,2,1,-l) = constraint failure .

The best point found in this search (*) is f(0,2,1,0) = 19. It is not a parent point so we
examine it further.

Variable ei f10,2,1,0) = 19

x_ =0+1 = !

xl = 0- I = -1

x2 = 2+1 = 3

.r2 = 2- ! = 1

f(1,2,1,0) = 23 (feasible)*

f(-I,2,1,0) = constraint failure

f(0,3,1,0) = constraint failure

ri0,1,1,0) = 14 (feasible)

38



X3 = 1+1 =2

X3 = 1--I =0

X4 = 0+1 -----1

X4 = 0--1 =--I

f(0,2,2,0) = constraint failure

f10,2,0,0) = 10 (feasible)
f10,2,1, !) = constraint failure

f(0,2,1,-l) = constraint failure .

The best point in this search (*) is f(l,2,1,O) = 23, which is the parent point for this search.

Therefore, according to step 7, we start again with a type II search of the remaining feasible points
that are not parent points (i.e., (0,1,1,0) and (0,2,0,0)) and take the best of these two searches.

Variable ei ri0, l,l,0) = 14

xl = 0+1 = 1 f(l,l,l,0) = 18 (feasible)

xl = 0-1 = -1 f(-I,0,1,0) = constraint failure

x2 = 1+1 = 2 f10,2,1,0) = 19 (feasible)

xz = 1-1 = 0 fl0,0,1,0) = 9 (feasible)

x3 = I+1 = 2 f(0,1,2,0) = constraint failure

x3 = 1-1 = 0 fl0,1,0,0) = 5 (feasible)

x4 = 0+1 = 1 ri0,1,1,1) = constraint failure

x4 = 0-1 = -1 f(0,1,1,-l) = constraint failure .

Variable _i f(0,2,0,0) = 10

x_ =0+1 = 1

xl = 0- l = -1

x2 = 2+1 = 3

x2 = 2-1 = 1

x3=O+l= 1

x3 = 0- 1 = -I

x4 = 0+1 = 1

X4 _- 0-1 = -1

f(1,2,0,0) = 14 (feasible)

fl-1,2,0,0) = constraint failure

f(0,3,0,0) = !5 (feasible)

riO, 1,0,0) = 5 (feasible)

f(0,2,1,0) = 19 (feasible)

f(0,2,-l,0) = constraint failure

f(0,2,0,1) = 15 (feasible)
f(0,2,0,-l) = constraint failure .

(1,1,1,0) and (0,2,1,0) are both previous parent points. Hence, using step 6, the next best point
that is an improvement over 10 and 14 is a tie betweenfl0,3,0,0) = 15 andfl0,2,0,l) = 15.
Examining both of these we have:

Variable ei f(0,2,0,1) = 15

xj =0+1 = 1

xl = 0- 1 = -1

x2 = 2+I = 3

x2 = 2-1 = 1

x3 = 0+1 = I

x3 = 0-1 = -1

x4 = 1+1 = 2

.,c4 = I-I =0

fll,2,0,1) = constraint failure

fl-1,2,0,1) = constraint failure

f(0,3,0,1) = constraint failure

f(0,1,0,1) = 10 (feasible)

f10,2,1,1) = constraint failure

f(0,2,-I,l) = constraint failure

f(0,2,0,2) = constraint failure

f(0,2,0,0) = 10 (feasible) .

39



Variable ei f(0,3,0,0) = 15

x_ = 0+1 = 1

xl = 0- I = -!

x2 = 3+1 = 4

x2 = 3-1 = 2

x3 = 0+1 = 1

x3 = 0-1 = -1

x4 = 0+! = 1

x4 = 0-1 = -1

f(1,3,0,0) = constraint failure

f(-1,3,0,0) = constraint failure

f(0,4,0,0) = constraint failure

f(0,2,0,0) = 10 (feasible)

f(0,3,1,0) = constraint failure

f(0,3,-i,0) = constraint failure

./[0,3,0,1) = constraint failure

f(0,3,0,-I) = constraint failure .

No improvements are seen over the respective initial points (10 < 15), so the procedure

terminates. The integer solution is the best one so far; that is, f(l,2,1,0) = 23.

It should be noted that this procedure required only 13 univariate exploratory searches. The

branch-and-bound procedure required to solve this problem took 25 iterations. Furthermore, each

branch-and-bound iteration is a simplex problem to be solved, one of which is extremely more

laborious than one exploratory search used here. For example, IESIP requires only integer

arthimetic in adding and subtracting one to each of the variable values, whereas simplex or dual

simplex requires the use of real arithmetic and the manual manipulation of dealing with fractions if

one is solving the problem by hand. This comparison between the computational complexity of the
two methods will be examined further in section IV.

D. Justification of Optimality

In discussing direct search heuristic procedures, certain questions such as the following are

repeatedly asked: "Under what conditions does this direct search heuristic converge to the solu-

tion? .... Once a solution is found, how good is it? .... What are the advantages, if any, of this pro-

cedure over other more established methods?"

Although several algorithms have been developed for the integer problem, some of them are

not uniformly efficient from the computational standpoint, particularly as the size of the problem

increases [5]. Both the fractional cut and branch-and-bound methods require the computer to deal

with fractions. This is a major difficulty in integer programming. The effect of round-off error that

results from the use of the digital computer for solving these problems can sometimes be sig-

nificant. Thus, heuristic algorithms including approximation, direction search, and the procedure

presented here are developed to deal with integer problems with strictly integer values. This

eliminates dealing with fractions.

The algorithm presented here is a modified direct search method that draws its abilities and

advantages from these modified and previously proven concepts. These are the greedy procedure,

neighborhood search, and the exploratory search developed by Hooke and Jeeves. This algorithm

does not pretend to be the panacea for all integer problems. Nor does it claim to always provide

the optimal integer solution in every case where it is applied. What it does claim is that it will

obtain in most cases the same "optimal" solution found by branch-and-bound with a reduction in

v_

%

40



computational work required.to do so. It will perform as do other heuristic methods and find a

solution which is optimal in almost all the cases examined by this research. The exceptions to this

are noted in section V.

Since this procedure is heuristic in nature, its validation will be strongly empirical. There-

fore, in section IV, 45 test problems are examined with the branch-and-bound and IESIP tech-

niques to substantiate the abilities and advantages of the new method.

E. Computer Implementation

In order to efficiently evaluate a number of test problems, the IESIP algorithm must be

automated. For ease of use and lower cost, the personal computer environment was chosen as the

instrument for handling this task. An adequate but efficient language had to be selected for this

algorithm. BASIC was ruled out due to its inherent shortcomings related to the screen input of text

strings. FORTRAN was discounted due to the unavailablity and high cost of a compiler. Other

languages were also considered, but since the author had some familiarity with Pascal, and its

attributes seemed to accommodate the needs of the algorithm, it was chosen as the language for

IESIP.

The IESIP program was written in Pascal due mainly to the requirements for dynamic

memory allocation, pointers, and structures. The size of a problem, the number of variables, and

the number of nodes that must be expanded will vary depending on the statement of the problem.

With dynamic memory allocation, one can allocate the spaces required for a new node when the

new node is encountered, as opposed to static memory allocation that would require us to allocate

the maximum amount of memory at the start of the program.

Pointers are used to facilitate the movement of data. That is, the data structures are stored

on the linked list with pointers so we can move the data from one list to another by just moving

the pointer as opposed to moving the data.

There are two basic structures used by this program. One is the structure of a data record.

That is, a data record will hold the coefficients of up to 30 variables and 3 extra variables--I for

the value when evaluated with the objective function, i for the evaluation of the constraint check,

and I for the operand if the node is a constraint function. Also, the data record will contain

pointers to the previous and next data record on the linked list. The second structure is a list

record that will contain three pointers, one to each of the data records, and the previous and next

list elements.

The program can be divided into the three major sections of initialization, problem evalua-

tion, and end printout. The reader is referred to the program listing in appendix B for further

details of the purpose and function of each subroutine.

Tables I and 2 present a sample input and output of the program. The sample problem

presented in these tables is the solution to the four-variable problem presented earlier in this

section.

41



Table 1. Sample input from IESIP computer program.

IESIP

Is the objective function to be maximized?

[y]es/[n]o/[h]elp default = no Y

Do you have the functions in a data file?

[y]es/[n]o/[h]elp default = no Y
Enter the file? TESTI.DAT

Maximization problem

Number of variables = 2

Objective function:

+4000.00 Xl +7000.00 X2

Constraint function(s):

+1200.00 Xl +2000.00 X2 <= 6000.00

+25000.00 Xl +80000.00 X2 <= 200000.00

Continuous solution rounded value:

(1, 1)

Do you wish to accept this rounded solution?

[y]es/[n]o/[h]elp default = yes Y

Enter the number of initial expansions

Integer or 0 for help

1

%

Do you wish to see the nodes as they are expanded?

[y]es/[n]o/[h]elp default = no Y

One interesting feature of the program is that it allows for either manual input or data

encoding in a data file called up by the program to be evaluated. The program also allows the user

to decide how many initial type I exploratory searches (with all feasible points examined) are

needed. The program calculates the initial rounded solution for the user and asks the user if it is

suitable. The user can examine each point expansion or can only view the final results. The

program also keeps a count of the exact number of additions, comparisons, and multiplications

required to both round and find a solution. A computational complexity score is also shown at the

end of the solution output. The significance and justification for this feature are discussed in

section IV.

42



Table 2. Sampleoutput from IESIP computerprogram.

Node Expansion (I)

(I, I) = ii000.000

(2, I) = 15000.000

(0, i) = 7000.000

(i, 2) = 18000.000

(i, 0) = 4000.000

Node Expansion (2)

(i, 2) = 18000.000

(2, 2) = C.F.

(0, 2) = 14000.000

(i, 3) = C.F.

(i, i) = Ii000.000

Press RETURN to continue...

Node Expansion (3)

(2, i) = 15000.000

(3, I) = 19000.000

(i, i) = ii000.000

(2, 2) = C.F.
(2, O) = 8000.000

Node Expansion (9)

(5, 0) = 20000.000

(6, 0) = C.F.

(4, 0) = 16000.000

(5, i) = C.F.

Do you wish to have the problem restated?

[y]es/[n]o/[h]elp default = no Y

Best solution(s) found:

(5, 0) = 20000.000

Computation of the rounded optimal solution required:

Additions: 2 Multiplications: 4 Compares: 2

9 Points were expanded reqdiring

Additions: 87 Multiplications: 174 Compares: 46

Computational complexity score = 863.827

43



IV. COMPARISON OF RESULTS - COMPUTATIONAL EXPERIMENTS

A. Algorithm Performance Measures

1. Current Methods

Developing a new algorithm such as the one presented in the preceding section is relatively

easy compared to the task of appraising the algorithm on its merits and benefits. One not only

wants an algorithm that works but an algorithm that is efficient. The efficiency of an algorithm can

be appraised by a variety of criteria. One such criterion is the execution time required by an algo-

rithm to solve a particular problem as compared to another algorithm's time to solve the same

problem. However, such a measure is strongly dependent upon the coded program, languages, and

machine used to implement the algorithm. Thus, a difference in the program may not represent a

signficant change in the underlying algorithm but may, nevertheless, affect the speed of execution.

Furthermore, if two programs are compared first on one machine and then another, the compari-

sons may lead to different conclusions. Therefore, while comparison of actual programs running on

real computers is an important source of information, the results are inevitably affected by

programming skill and machine characteristics. Ignizio [51] recognized the comparison of algo-

rithms based on computation time as poor at best. He further suggested that if selections and

comparisons are to be intelligently made, a systematic procedure for recording and presenting an

algorithm's performance must be implemented. He suggested that this procedure consist of the

following: (!) a standard reporting format which contains essential factors such as dates, computer

used, language used, memory used, etc., and (2) a measurement standard consisting of computation

time, internal and external storage requirements, problem size, and accuracy (i.e., how close the

algorithm came to the actual optimal answer).

An alternative to comparing execution times is the use of established software metrics.

These metrics measure the complexity of the source code. Most of the metrics incorporate easily

computed properties of the source code, such as the number of operators and operands, the

complexity of the control flow graph, and the number of parameters and global variables in

routines. The approach taken is to compute a number, or set of numbers, that measures the

complexity of the code. Halstead [52] developed a number of metrics that are widely used and

easily computed from the properties of the source code. These properties include the total number

of operators in a program, the total number of operands in the program, and the number of unique

operators and operands. Another metric available and also widely used was developed by Thomas

McCabe. McCabe's cyclomatic complexity measure [53] attempts to measure and control the

number of basic paths through a program. He represents the software via a connected graph and

computes a cyclomatic number (or score) V, where V is found by

V = E-n +2p

and E is the number of edges, n is the number of nodes, and p is the number of connected

components.

44



The basicunderlyingdrawbackto thesetwo approachesbeingutilized in comparingtwo
algorithms is that they areextremelydependenton the softwarecoding itself. Different
programmersor the sameprogrammeron differentdayscould producedifferent results.Thus, if
using thesemethodssolely to comparea candidatealgorithm to an existingalgorithm, one might
be comparingthe softwareof a highly skilled programmeragainsta moderatelyskilled one.

Another approachto algorithmperformancelies in the arenaof accuracy.Parkerand Rardin
[25] and Lee and Lee [53] suggestthat whencomparinga nonexactheuristicalgorithm to anexact
procedure,a comparisonshouldbe madeby "performanceratio." This basesthe performanceof
the challengeralgorithmsolely on the quality of the solutionobtained.The performanceratio in
questionis

PH(t) =

if t is a maximization problem

vl 1(0

v(t)
if/ is a minimization problenl.

VH(t) is the value of the solution returned by the nonexact heuristic procedure H on instance t

and v(t) is the value of an optimal solution at instance to. Several points or drawbacks to this

approach are also noted. One is that the ratios make sense only when the solution values are non-

negative. Also, adding a constant to the objective function changes no solutions, but does impact

the ratio (e.g., a maximization ratio of 57/55 adjusted by a constant of 2 yields 59/57, hence 57/55

¢= 59/57). This ratio only has merit if most of the heuristic solutions are different from the optimal

solution. If the purpose is to show that a particular algorithm is better than an existing algorithm

on a certain class of problem and the optimal solution is nearly always obtained using the heuristic

procedures, then the accuracy performance ratio would only show it performed equally well, not
better.

2. Proposed Alternative

This research has produced an algorithm that competes with an existing algorithm (branch-

and-bound) in the solution of pure integer programming problems. The preceding section outlined

some accepted procedures for comparing algorithms against one another. These procedures are well

established and, in the correct application, are useful in determining the efficiency or lack of effi-

ciency of a new algorithm. However, since the author developed the software for the IESIP pro-

cedure and is comparing it to an existing commercially available branch-and-bound algorithm Quan-

titative Systems for Business (QSB), the use of comparing run-times and software metrics is ruled

out. Furthermore, since a primary objective of this research was to show that the new algorithm is

better than branch-and-bound on a certain class of problems, the accuracy performance ratio

approach is not useful due to its inability to show improvement of the heuristic over the existing

procedure.

With this in mind, the need for an alternative approach for comparing methods became

obvious. A process was needed that not only showed the benefits of using the new algorithm on a

computer, but also the intrinsic value of its ease of calculation when done manually (on paper).

Crowder, Dembo, and Mulvey suggest the following:

45



A variety of performanceindicatorshasbeentraditionally usedby mathematical
programmersfor evaluatingtheefficiency of competingtechniques.A simplecount-
ing of the numberof stepsis requiredby the algorithm. This indicator is relatively
independentof the computerused.Another indicator is the numberof timesthat a
basicoperationsuchas addition or multiplication/division is requiredduring the
executionof the algorithm [54].

Sucha procedurewasalludedto by Kronsj6 [55] and substantiatedby others.This alterna-
tive approachbasesits criteria on the computationalcompexityof an algorithm. In using this termi-
nology, Kronsj6 refers to estimatingthe computationaleffort requiredto solve the problemand
measuringit by the numberof arithmeticor logical operationsrequired,e.g., the numberof
multiplicationsand additionsneededand the numberof comparisonsbetweentwo entriesin an
iterative algorithm. This approachwasalso utilized by Winogradin his devlopmentof ways to
improve the efficiency of computationalalgorithms.He developedidentities relatingnumberof
multiplicationsand additionsrequiredto evaluatecertainforms of polynomialsand laterextended
this to the total numberof arithmeticoperationsrequiredof an algorithm [55]. This literatureand
the consultationof Drs. Hooperand Ranganathof the University of Alabamain Huntsville Compu-
ter ScienceDepartment[56] encouragedthe authorto developa proceduretermedComputational
Complexity Scoring(CCS) system,to comparethe performanceof the new algorithmagainstthe
branch-and-boundmethodon a given problem. The scoringprocedureand comparisonmethodology
will now be discussedin detail in the following section.

B. Algorithm Computational Complexity Comparison

After examining the suggestions of Winograd, Kronsj6, Crowder, et al., and Hooper and

Ranganath, a scoring system was developed for the evaluation of these two competing techniques.

The scoring system contains three distinct aspects. One is the knowledge of how many specific

seed value expansions (explorations) are required to solve the problem. If solving the problem by

hand, one simply counts the number of times a point is examined. If the IESIP software is being

utilized, it will keep track of this value for the user. The same requirement is true of the branch-

and-bound technique. Knowledge of the number of iterations required to solve the problem is

needed. An iteration using the branch-and-bound software utilized in this research refers to a con-

clusive (either feasible or infeasible) iteration of the simplex method obtained from a node investi-

gation.

Another piece of knowledge required by the scoring system is the number of comparisons

(e.g., is one value less than another?), additions (subtractions), multiplications, and divisions

required of IESIP to do an expansion, or of branch-and-bound to perform a simplex (dual) itera-

tion. Also required is a relative "weight" or duty factor associated with each of these operations.

For example, multiplication and division increase computational complexity not only for the person

solving the problem by hand, but also for the computer. The latter two aspects, number of opera-

tions and relative weights, required further explanation in the following sections.

%

,t6



1. Number of Operations

When an individual performs a branch-and-bound integer programming procedure by hand,

he generally is faced with the painstaking ritual of adding, subtracting, multiplying, and dividing

numerous sets of fractional numbers at every iteration of this procedure. With IESIP, this task has

been reduced to a simple case of adding and subtracting "!," multiplying by integers, and evaluat-

ing a constraint (comparison), with no fractional operations or divisions.

Examining IESIP first, and using the following worst case assumptions, the number of

additions/subtractions, multiplications, and comparisons can be formulated:

(I) All contraints must be examined each time a point is explored. (Best case would be a

constraint failure detection on the first constraint examined.)

(2) Every expansion examines both + 1 and - 1 increments on each variable. This would

be decreased if all coefficients in the objective function were positive. (IESIP rule states that if the

+ 1 increment does not have a constraint failure, then there is no need to examine the - 1

increment in a maximization problem.)

Addition/Subtraction Operations:

(1) lncrementation of each variable by + 1 or - 1 --_ (2) (# of variables)

(2) Addition of each constraint term --_ # variables - I

(3) Total additions for constraint evaluation --_ (# variables - 1) (# constraints) (2) (#

variables).

Therefore, the total number of addition/subtraction operations per IESIP expansion is

2v + (v - I)(c)(2v) = 2v( 1 + vc - c) (5)

where v is the number of variables and c is the number of constraints.

Multiplication Operations:

(1) Evaluation of the objective function at each increment of I --> (2) (# variables)

(2) Evaluation of each constraint at each increment of 1 --_ (2) (# variables) (# variables)

(# constraints).

Therefore, the total number of multiplication operations per IESIP expansion is

2v+ (2v)(vc) = 2v(l + vc) (6)

47



Division Operations:

No division is required when using IESIP.

Comparison Operations:

(1) Checking constraints --_ (2) (# variables)(# constraints)

(2) Checking the best value against the previous best --, 1.

Therefore, the total number of comparison operations per IESIP expansion is

2vc + I (7)

Now we will examine the branch-and-bound procedure. In order to give it the benefit of the

doubt, we will make best case .assumptions. These are the following:

(1) Only one additional constraint is added to the simplex problem at each iteration.

(2) Optimal for a respective iteration is obtained with use of dual simplex only. Sometimes

in branch-and-bound, the user must apply regular simplex to find optimal within a partcular node

branch when dual simplex cannot be continued.

Addition/Subtraction Operations:

(l) Calculation of each new row--, (# variables+ # constraints+l+ I) (# constraints)

Extra /"/RHS_Not constraints +1

Constraint Value since pivot row is

done by division.

(2) Calculation of Xo row --_ (# constraints + I) (# constraints + # variables + I + 1).

Therefore, the best case total number of additions/subtractions at each iteration of branch-and-bound

is

(v+c+2)(c)+(c+l)(v+c+2) = (v+c+2) (2c+1) (8)

Multiplication Operations: (same as addition/subtraction)

vt

48



Division Operations:

(I) Pivot row calculations --, # variables + # constraints + 1 + !

Extra RHS

Constraint

(2) Ratio row calculations --_ # variables + # constraints + I.

Added

Constraint

Therefore, the best case total number of division operations at each iteration of branch-and-bound
is

v+c+2+v+c+l = 2v+2c+3 (9)

Comparison Operations:

( I ) Searching for pivot --, (# constraints + I) + (# variables + # constraints + I)

(2) Check to see if done--_ (# constraints + 1)

(3) Compare to best value so far--, I.

Therefore, the best case total comparison operations at each iteration of branch-and-bound is

c+l+v+c+l+c+l+l = v+3c+4 (10)

Finally, to compute the total number of respective operations for either branch-and-bound or

IESIP, one need only multiply the total number of expansions or iterations by the values obtained

with the above formulas to obtain the totals for each operation type. An example will follow later
in this section that describes the details of this calculation.

2. Weights Associated With Each Operation

It would be difficult to determine the relative difficulty encountered by an individual solving

an ILP problem between addition and multiplication calculations. However, a computer examines

the two operations on a consistent mechanical field of play and weights the difficulty of each oper-

ation according to how much work it has to do to accomplish a respective task. For instance, the

Intel 80286 microprocessor-based personal computer can execute a compare instruction in 6 clock

cycles, while the same machine requires 25 clock cycles to execute a division instruction. In

table 3, the clock period instruction times of a representative sampling of personal computer

microprocessors are listed for the four operations required by the two algorithms presented here.

49



Table 3. Worst case microprocessor instruction times [57,58].

(Values in number of clock periods)

Instruction

Compare

Add/Sub

Multiply
Divide

Motorola

68010

(1982)

6

12

42

122

Intel

80386

(1988)

5

7

24

25

Intel

80286

(1988)

6

7

24

25

80286

Relative

Effort

Factors

1

1.1666

4.0

4.1666

r_

Note: 80286 Clock Period = 125 nanoseconds/period
80386 Clock Period = 50 nanoseconds/period

The Intel 80286 is chosen as the benchmark for our comparison for the following two reasons: (1)

it is widely available for both student and industry users, and (2) it is the microprocessor that was

used by the author to conduct this study. Also shown in the table are the relative weights for each

operation. These are calculated by taking the compare operation as the lowest user of computer

effort and relating it by a multiplication factor to the other more effort-demanding operations.

The only task remaining to produce a composite computational complexity score for a

problem is to multiply the total addition, multiplication, division, and compare operations by

their respective effort factors and sum to a total value. A detailed example follows which uses a

previously solved problem from section III and the output of the branch-and-bound based ILP

software package called QSB.

%

From section III we have:

maximize

subject to:

C. Example Problem

Z = f(x I ,x2) = 4,000xl + 7,000x2
i

1,200xt + 2,000x2 _< 6,000

25,000x, + 80,000x2 <_ 200,000

x,,x2 >1 0 and integer.

Using IESIP in section III, we obtained an integer solution off(5,0) = 20,000 after nine

expansions (or exploratory searches).

Using QSB, the following branch-and-bound solution is obtained after nine iterations: k

50



Summary of Results for TEST1 Page : I

VariablesI IOb+nctnlVariablestL°b+Fn+tnNo. Names Solution Coefficient No. Names Solution Coefficient

1 Xl 5.000 4000.000 I_-----_---I 0.000 7000.000

Maximum value of the OBJ' = 20000 Total iterations = 9

IESlP

Therefore, using the equations from the preceding section we have:

Additions --, 2v(l + vc- c) = 2(2)(1 + (2)(2) - 2) = 12

(from equation (5))

Multiplications --> 2v(l + vc) = 2(2)(! + (2)(2)) = 20

(from equation (6))

Divisions--> 0

Comparisons --, 2vc + I = (2)(2)(2) + 1

(from equation (7))

Therefore, at nine expansions, the totals are:

=9

108 Addition Operations

180 Multiplication Operations

0 Division Operations

81 Comparison Operations

Now using the effort factors developed, the following computational complexity score can be deter-

mined for the IESIP algorithm:

CCSI = 81 ( I ) + 108( !. 1666) + 180(4.0) + 0(4.1666) = 927

Branch-and-Bound

Additions --, (v+c+2)(2c+ 1) = (2+2+2)((2)(2)+ 1) = 30

(from equation (8))

Multiplications --> (v + c + 2)(2c +/) = (2 + 2 + 2)((2)(2) + I) = 30

(from equation (8))

Divisions --, 2v+2c+3 = (2)(2)+(2)(2) + 3 = 11

(from equation (9))

51



Comparisons--, v+3c+4 = 2+(3)(2)+4 = 12

(from equation (10))

Therefore, at nine iterations, the totals are

270 Addition Operations

270 Multiplication Operations

99 Division Operations

108 Comparison Operations

Using the effort factors developed, the following computational complexity score can be determined

for the branch-and-bound algorithm:

CCS_ = 108(1.0) + 270(1.1666) + 270(4.0) + 99(4.1666) = ! ,915.5.

Since the IESIP algorithm's score (927) is less than the branch-and-bound score (1,915.5),

we can say that it was a computational improvement over the branch-and-bound. Furthermore, as

an added benefit, it also achieved the same optimal solution as the branch-and-bound pro-

cedure--fl5,0) = 20,000.

As previously mentioned in section Ill, the IESIP computer program calculates the exact

number of additions, multiplications, and comparisons required by the IESIP algorithm to solve a

particular problem. The example just solved by the IESIP software produced the following output:

Best solution(s) found: (5,0) = 20000.000

Computation of the rounded optimal solution required:

Additions: 2 Multiplications: 4 Compares: 2

9 Points were expanded requiring

Additions: 87 Multiplications: 174 Compares: 46

Computational complexity score = 863.827.

One can easily ascertain that the IESIP CCS using the software is much lower than the

worst case value just computed by hand. This is due to the software's ability to eliminate certain

needless computations such as expanding type II searches in both the "minus one" and "plus one"

directions after a success of one or the other. In contrast, the manual method presented above

assumes worst-case conditions, i.e., every point is expanded with both + 1 and - 1.

In part D of this section, a table is presented that summarizes the findings obtained using

some test problems. The computational complexity score for the IESIP algorithm shown for each

test problem is the score found using the software. The score shown for branch-and-bound is the

score found by assuming the best case situation described earlier in this section (to give branch-

and-bound its best advantage).

52



Problem I
and

Type

1 Max

2Max

3 Max

4Max

5 Max

6MJn

7 Min

8 Max

9 3_ax

1_ Max

11 Max

12 Max

13 Min i

14 Max

15 Max

16Max

17 Min

18Max

19Max

20Max

21Max

22 Max

23 Max

24 Max

25 Max

Table 4. Computational results of test problems.

Number of

var_zdaleo (v) and

constrai nts (©)

2v, 2C

2v, 2C

2v, 2C

2v,2c

2v, 2c

B&B

Optimal
Value *

20,000 *(9)

0 (5)

Infeasible(2)

10 (3)

17 (17)

2v, 2c 40

2v, 2c 2

2v, 2c 12

2v, 2c 4

2v, 2c 165

2v, 2c 37

2v, 2c ii

2v, 2c 6

2v, 2c 13

2v, 2c I0

2v, 2c 57

2v, 2c 19

2v, 2c 5

2v, 3c 24

2v, 34: 16

2v, 3c 102

3v, 2c 10

3v, 2c 45

3v, 2c 15

3v, 3c 10

(3)

(5)

(5)

(11)

(5)

(5)

(5)

(3) t

(5)

(3)

(5)

(3)

(7)

(7)

(9)

(3)

(3)

(19)

(3)

(6)

Solution B & B
Value * CCS CCS merit

20,000 (9) 1915.5 863.8 Yes

0 (1) 1064.2 88.5 Yes

Infeasible(l 425.7 20.3 Yes

10 (4) 638.5 291.0 Yes

17 (4) 3618.2 329.7 Yes

40 (7)! 638.5 679.7 NO

2 (4) 1064.2 359.2 Yes

12 (4) 1064.2 340.8 Yes

4 (4) 2341.2 281.8 Yes

165 (4) 1064.2 359.2 Yes

37 (4) 1064.2 359.2 Yes

11 (4) 1064.2 329.7 Yes

6 (5) 638.5 397.8 Yes

13 (5) 1064.2 359.2 Yes

10 (5) 638.5 388.7 Yes

57 (5) 1064.2 602.3 Yes

19 (6) 638.5 504.7 Yes

5 (9) 1489.3 648.2 Yes

24 (4) 2256.7 481.2 Yes

16 (5) 2901.0 677.5 Yes

102 (5) 967.0 610.3 Yes

10 (10) 744.0 1919.0 NO

45 (4) 4712.0 699.7 Yes

15 (8) 744.0 2090.7 NO

10 (8) 2207.0! 1979.0 Yes

Per_ntap Perfor-

IESIP Improve- Improvement man_
over B & B Ratio

54.9 % 1.00

91.7 % 1.00

95.2 % 1.00

54.4 % 1.00

90.9 % 1.00

- 6.5 % 1.00

66.2 % 1.00

67.9 % 1.00

87.8 % 1.00

66.2 % 1.00

66.2 % 1.00

69.0 % 1.00

37.7 % 1.00

66.2 % 1.00

39.1% 1.00

43.4 % 1.00

20.9 % 1.00

56.5 % 1.00

78.7 % 1.00

76.6 % 1.00

36.9 % 1.00

-157.9 % 1.00

85.2 % 1.00

-181.0% 1.00

10.3 % 1.00

53



h'oblem #

and

Type

26 Max

27 Max

28 Max

29 Max

3O Max

31 Max

32 Max

33 Max

34 Max

35 Max

36 Max

37 Max

38 Min

39 Max

40 Max

41 Max

42 Max

43 Max

44 Max

45 Max

Table 4. Computational results of test problems (continued)

Number of B & B IESIP

variables (v) and Optimal Solution B A B IESIP

oonatrainta (c) VMue * Value * CCS CA?,S

3v, 3c

3v, 3C

26 (5)

47.8 (117)

26 (3)

47.8 (9)

(i)

(3)

(5)

(6)

(11)

(1)

(1)

(9)

(6)

(13)

(84)

(6)

(3)

(3)

(4)

(9)

90481 (53)

92550 (22)

3v, 3c 64

3v, 3c 23

3v, 3c 4

3v, 3c 14

3v, 3c 8

3v, 4c 5

3v, 4c 27

3v, 5c 18

4v, 3c 63

4v, 3c 23

4v, 3c 23

4v, 3c 22

4v, 3c 42

4v, 3c 28

4v, 6c 4250

6v, 3c 1400

(5) 64

(5) 23

(5) 4

(9) 14

(43) 8

(11) 5

(13 27

(3) 18

(23) 63

(25) 23

(11) 23

(13) 22

(7) 42

(3) 28

(49) 4250

(33) 1400

10v, 4c

20v, 4c

90481 (125)

92564 (207)

1839.2

43036.5

-1839.2

- 1839.2

1839.2

3310.5

15816.9

5580.7

6595.3

2008.5

9506.7

10333.2

4546.7

5373.3

2893.3

1240.0

45463.8

16643.0

246812._

301702.5

Improve- Improvement
went over B & B

824.3 Yes 55.2 %

2987.3 Yes 93.1%

362.0 Yes 80.3 %

870.3 Yes 52.7 %

853.0 Yes 53.6 %

1275.3 Yes 61.5 %

2953.6 Yes 81.3 %

454.0 Yes 91.9 %

454.0 Yes 93.1. %

2465.6 No -22.8%

2259.0 Yes 76.2 %

6131.9 Yes 40.7 %

26443.2 No - 481.6%

2074.5 Yes 61.4 %

1108.5 Yes 61.7 %

1108.5 Yes 10.6 %

2455.5 Yes 94.6 %

10320.6 Yes 38.0 %

160052.5 Yes 35.2 %

279541.2 Yes 7.3 %

Perfm,-

Ratio

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00015

r_

* Numbers in parenthesis indicate number of iterations and expansions for
branch-and-bound and IESIP respectively.

54



Table 5. Summary of test problem results.

Type of Problem
# Vet. # Con_Wldnt_ # Max. # MirL # Total

2 2 14 4 18

2 3 3 0 3

3 2 3 0 3

3 3 8 0 8

3 4 2 0 2

3 5 I 0 I

4 3 5 1 6

4 6 I 0 I

6 3 1 0 1

10 4 1 0 1

20 4 1 0 1

Totals

Improvements
Over B & B

17 (94.4 %)

3 (100 %)

1 (33.3 %)

8 (100 %)

2 (100 %)

0 (0 %)

No Improvement
[Irl t.4_

over B 8,B

1 (min)

0

2 (max)

0

0

1 (max)

Avm'a_ %

Improvement overB & B
for a Cl_ of Proteins

63.2 %

64.1%

n

61%

92.5 %

.m

5 (83.3 %) I (min) --

1 (100 %) 0 *

1 (100 %) 0 *

1 (100 %) 0 *

I (100 %) 0 *

40 5 (2 min)

(3 max)

TotalPercentageofProblems thatShowed Improvement overB & B = 88.9%

PercentageofMaximizationproblemsthatShowed Improvement overB & B = 92.5%

PercentageofMinimizationproblemsthatShowed Improvement overB & B = 60.0%

Average percentimprovement inComputationalComplexity (allproblems)= 35.6%

Average percentimprovement inComputationalComplexity (onlyimproved problems)= 61.2%

* onlyone testproblemwas examined forthisclassofproblem

D. Computational Experience With Test Problems

In order to verify the improved efficiency of the heuristic developed in this research,it is

necessary to solve a variety of test problems using the new algorith. There were 45 problems found

in different texts and they vary in size from 2 variables and 2 constraints up to 20 variables and 4

constraints. These test problems and their sources are presented in appendix C. Of the 45

problems, 41 were solved manually as well as with the IESIP software in appendix B. The remain-

ing 4 problems, because of their size, were solved only with the software. Every test problem was

also solved using the commercially available branch-and-bound integer programming software

entitled QSB. The results of the test problems are presented in tables 4 and 5.

55



When solved with the IESIP algorithm, 44 of the 45 tes;t problems achieved the same

optimum solution as found with the branch-and-bound method. The one remaining problem (20

variables) got a near optimal answer that had a performance ratio (Parker and Rardin optimal/

heuristic ratio) of 1.00015. Of the 45 test problems, 40 (89 percent) showed substantial

improvement over the branch-and-bound solution examined in light of their respective computa-

tional complexity scores.

E. Multiple Optima

Two of the test problems illustrate a major advantage of the IESIP algorithm over the

branch-and-bound algorithm. This is its ability to find and identify multiple optimal solutions. As

an example, test problem 18 when solved with the branch-and-bound algorithm produces the

following results:

Summary of Results for TEST18 Page : 1

_s[ [Obj. Fnctn. IVariables I IObj. Fnctn.
No. Names I Solution ICoefficientlNo. Names Solution Coefficient

M-_imum value of the OBJ =" 5 Total iterations -- 7

Notice that only one solution is produced (5,0) with no indication of multiple optima. How-

ever, when the same test problem is solved using IESIP, it produces three optimal solutions in nine

expansions--(5,0), (3,2), and (4,1). All three are recognized and printed by the software as shown

below:

Is the objective function to be maximized?

[y]es/[n]o/[h]elp default = no Y

Do you have the functions in a data file?

[y]es/[n]o/[h]elp default = no Y

Enter the file? TESTI8.DAT

Maximization problem

Number of variables = 2

Objective function:

+I.00 Xl +i.00 X2

Constraint function(s):

+2.00 Xi +5.00 X2 <= 16.00

+6.00 Xl +5.00 X2 <= 30.00

Continuous solution rounded value:

(3, i)
%

56



Do you wish to accept this rounded solution?

[y]es/[n]o/[h]elp default _ yes Y

Enter the number of initial expansions

Integer or 0 for help

1

Do you wish to see the nodes as they are expanded?

[y]es/[n]o/[h]elp

Node Expansion (i)

(3, i) = 4.000

(4, i) = 5.ooo

(2, I) = 3.000

(3, 2) = 5.000

(3, 0) = 3.000

Node ExpansiOn (2)

(4, i) = 5.000

(5, i) = C.F.

(3, i) = 4.000

(4, 2) = C.F.

(4, 0) = 4.000

Press RETURN to continue...

Node Expansion (3)

(3, 2) = 5.000

(4, 2) = C.F.

(2, 2) = 4.000

(3, 3) = C.F.

(3, I) = 4.000

Node Expansion (4)

(2, I) = 3.000

(3, i) = 4.000

(I, I) = 2.000

(2, 2) = 4.OOO

(2, 0) = 2.000
Press RETURN to continue...

default = no Y

Node Expansion (5)

(3, 0) = 3.000

(4, O) = 4. 000

(2, 0) = 2.000

(3, i) = 4.000

Node Expansion (6)

(3, i) = 4.000

(4, i) = 5.000

(3, 2) = 5.000

Node Expansion (7)

(4, 0) = 4.000

(5, 0) = 5.000

(4, i) = 5.000

Press RETURN to continue...

Node Expansion (8)

(2, 2) = 4.000

(3, 2) = 5.000

(2, 3) = C.F.

(2, I) = 3.000

Node Expansion (9)

(5, 0) = 5.000

(6, 0) = C.F.

(4, O) = 4.000

(5, i) = C.F.

Do you wish to have the problem restated?

[y]es/[n]o/[h]elp default = no Y

Maximization problem

Number of variables = 2

57



Objective function:

+i.00 Xl +I.00 X2

Constraint function(s):

+2.00 X1 +5.00 X2 <= 16.00

+6.00 Xl +5.00 X2 <= 30.00

Continuous solution rounded value:

(3, I)

Best solution(s)

(5, 0) = 5.000

(3, 2) = 5.000

(4, I) = 5.00o

found:

Computation of the rounded optimal solution required:

Additions: 2 Multiplications: 4 Compares: 2

9 Points were expanded requiring

Additions: 65 Multiplications: 130 Compares: 32

Computational complexity score = 648.162

F. Restrictions Required of IESIP

Associated with many heuristic procedures are certain restrictions placed on the type and

size of problem that realistically can be solved. The IESIP algorithm's only restriction is that it

cannot accommodate strict "equal to" (=) constraints. This problem is apparent and self-explained

when one tries to round a continuous solution to an integer solution when starting the IESIP

algorithm.

The following example illustrates the "equal to" constraint dilemma:

maximize Z = f(xt ,x2,x3) = 20x, + 10/'2+ 10x3

subject to: 2x_ +20x2+4x3 <_ 15

6xj + 20x2 + 4x3 = 20

x_,x2,x3 >>-0 and integer .

The continuous solution is f(3.333,0,0) = 66.666. If an attempt is made to apply the IESIP

rounding principles, then a suitable starting solution cannot be found. For example, (3,0,0) fails

constraint two. So does every other combination except the unique and optimal solution of (2,0,2)

= 60. Unless one is "lucky" and the optimal equals the rounded solution, no feasible continuous

rounded solution can be found for a problem like this, and therefore the IESIP algorithm has no

starting point. Not even (0,0,0) will work.

58



The only other restriction found for the IESIP algorithm is in its software version. Due to

segmetation of memory by MS-DOS, Pascal programs are limited to 640 (655,360) kilobytes of

memory. When solving the last test problem (20 variables, four constraints), an attempt was made

to extend the type I search to a second level and see if the optimal solution would be found. The

program was halted at expansion number 96 due to lack of memory. This problem did not occur

with the 10 variable problem that was type I expanded twice. This memory problem will be

dependent on the following three factors: (1) number of variables, (2) number of constraints, and

(3) number of expansions required to solve the problem. It should be noted that this problem

would not occur if the software were simply placed on a mainframe computer with a much larger

memory capacity than a typical PC-based system.

V. CONCLUSIONS AND RECOMMENDATIONS

A. Conclusion

The purpose of the search documented in the previous sections was the creation of an

improved heuristic search technique for solving pure integer linear programming problems. By

drawing from the ideas of Hooke and Jeeves type I and type II exploratory searches, greedy pro-

cedures, and neighborhood searches, the IESIP algorithm starts with the _:ontinuous solution to the

problem which it rounds to a starting integer solution, then expands points until obtaining the best

maximum or minimum solution to the problem. Not only does IESIP show significant computa-

tional complexity improvements over the branch-and-bound method in 89 percent of the 45 test

problems examined, but it also finds the global optimal solution in all but one of these.

In summary, the following five conclusions are drawn from the previous discussion:

1. IESIP has clearly proven itself to be more computationally efficient than the branch-and-

bound method in 40 of the 45 test problems that were examined. It also has been shown that

IESIP found the same optimal solution as the branch-and-bound method in 44 of the 45 test

problems. Furthermore, the one problem that did not achieve the optimal value was only 14 off the

optimal which gives a heuristic solution performance ratio of 1.00015.

2. A computational complexity scoring system was developed to compare the number and

degree of actual computations required of the IESIP algorithm and the best case number and degree

of computations required of the branch-and-bound algorithm. These scores were computed for each

test problem and shown in table 4 of section IV. Of the problems that showed improvement, the

average percentage improvement in computational effort over the branch-and-bound method was

61.2 percent.

3. IESIP showed ability in solving larger problems. This was illustrated by solving both a

10 and 20 variable problem. It also showed an ability to find far-removed-from-continuous integer

solutions (integer solutions that are not close to their rounded continuous solution) with approxi-

mately 55 percent less computational effort than branch-and-bound (see problem I and problem
15).

59



4. IESIP was also found to have one other advantage over branch-and-bound in that in two

cases (test problem 18 and test problem 25) alternative optima were not only recognized but also

identified. The branch-and-bound algorithm only found one of the optimal solutions in each

problem and also gave no indication that other solutions exist.

5. Lastly, and probably the most overlooked improvement in integer programming brought

about by this research, is the ease of its implementation and execution when one is solving a

problem by hand. If a problem (e.g., test problem l) requires nine iterations of dual simplex to

solve by the branch-and-bound algorithm and nine expansions of IESIP, then the computational

work involved in manually solving this problem with IESIP is much easier than the nine full

tableaus of simplex required if solving it with branch-and-bound. This is primarily due to the IESIP

procedure's univariate use of only + 1 and - 1 in its solution process. This improvement of not

having to go through the agony of calculating three or four new basic rows with each iteration of

simplex is, in the author's opinion, quite valuable, particularly for instructional purposes.

The methodology and heuristic procedure developed and illustrated in the preceding sections

represent an improved exploratory search technique for solving certain integer programming

problems. The algorithm not only solves two and three variable problems, but also works well on

the tougher 6, 10, and 20 variable problems. The only apparent limitation discovered about the

algorithm is its inability to deal with "equal to" constraints. However, various combinations of

"'less than or equal to" and "greater than or equal to" constraints did not affect the algorithm's

ability to find an optimal solution. It is this seemingly broad range of applications that will hope-

fully stimulate future research on the application of this procedure to larger and more complex

problems.

B. Recommendations for Future Work

With some minor modifications to the algorithm and software, one could solve nonlinear

integer programming (NLIP) problems. The body of knowledge surrounding NLIP problems could

be enhanced by possible improvements from a nonlinear IESIP. This topic could be examined from

both a nonlinear objective function with linear constraints standpoint and also from a nonlinear

objective function and nonlinear constraint situation. IESIP's impact on nonlinear problems will be

even better than what was achieved on linear problems, since NLIP's are generally even more

cumbersome to work with than linear problems.

Another area of exploration would be the detailed analysis of many more problems of vary-

ing variable and constraint size to further substantiate the improved efficiency of IESIP over

branch-and-bound. For example, one might determine that if the number of constraints is three

times the number of variables, then the likelihood of IESIP having a lower CCS score is greatly

reduced. This particular investigation would require large numbers of sample or test problems of

various sizes.

Finally, the possiblity of extending IESIP to mixed programming problems bears investiga-

tion. Certain modifications in the searching procedures designed to separate integer-constrained

variables from those without such restrictions (analogous to mixed cutting methods) may be

possible.

60



REFERENCES

1. Nemhauser, G.L., and Wolsey, L.A.: "Integer and Combinatorial Optimization." John Wiley

and Sons, New York, 1988, pp. vii and 60.

2. Beale, E.M.: "'Integer Programming." Computational Mathematical Programming, Vol. 15,

1985, p. 2.

3. Taha, H.A.: "Integer Programming -Theory, Applications, and Computations." Academic

Press, New York, 1975, pp. 2, 6, and 202-225.

4. Garfinkel, R.S., and Nemhauser, G.L.: "Integer Programming." John Wiley and Sons, Inc.,

New York, 1972, pp. 2-5, 60, 324-337.

5. Taha, H.A.: "Operations Research: An Introduction." MacMillan Publishing Co., New York,

1987, pp. 305-330.

6. Gomory, R.E.: "'An Algorithm for Integer Solutions to Linear Programs." Recent Advances in

Mathematical Programming, Graves and Wolfe, eds., McGraw-Hill, New York, 1963, pp.

269-302.

7. Gondran, M., and Simeone, B.: "Cutting Planes." Annals of Discrete Mathematics, Vol. 5,

1979, p. 193.

8. Salkin, H.M.: Integer Programming." Addison-Wesley Publishing Co., Reading,

Massachusetts, 1975, pp. 17-19.

9. Land, A., and Doig, A.: "An Automatic Method for Solving Discrete Programming

Problems." Econometrica, Vol. 28, No. 3, 1960, pp. 497-520.

10. Dakin, R.T.: "A Tree Search for Mixed-Integer Programming Problems." The Computer

Journal, Vol. 8, 1965, pp. 250-255.

!i. Driebeck, N.: "An Algorithm for the Solution of Mixed Integer Programming Problems."

Management Science, Vol. 12, No. 7, 1966, pp. 576-587.

12. Balas, E.: "'An Additive Algorithm for Solving Linear Programs With Zero-One Variables."

Operations Research, Vol. 13, No. 4, 1965, pp. 517-548.

13. Lemke, C., and Spielberg, K.: "Direct Search Algorithm for Zero-One and Mixed Integer

Programming." Operations Research, Vol. 15, No. 5, 1967, pp. 892-914.

14. Geoffrion, A.M.: "An Improved Implicit Enumeration Approach for Integer Programming."

Operations Research, Vol. 17, 1969, pp. 437-454.

_- 61



15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Budnick, F.S., Mojena, R., and Vollmann, T." "Principles of Operations Research for

Management." Richard D. Irwin, Inc., Homewood, Illinois, 1977, p. 229.

Ozan, T.M." "Applied Mathematical Programming for Production and Engineering

Management." Prentice-Hall, Englewood Cliffs, New Jersey, 1986, pp. 306-392.

Healy, W.C.: "Multiple Choice Programming." Operations Research, Vol. 12 1964, pp.
122-138.

Reiter, S., and Sherman, G." "Discrete Optimizing." Journal of the Society for Industrial and

Applied Mathematics, Vol. 13, No. 3, 1965, pp. 864-889.

Reiter, S., and Rice; D.B.: "Discrete Optimizing Solution Procedures for Linear and Non-

linear Integer Programming Problems." Management Science, Vol. 12, No. 11, 1966, pp.
829-850.

Kreuzberger, H.: "Numerische Erfahrungen mit einem heuristischen verfahren zur Lrsung

ganzzahliger linearer optimierungsprobleme." Electronishe Daten-verarbeitung, Heft 7, 1970,
Seiten 289-306.

Kochenberger, G.A., McCarl, B.A., and Wyman, F.P." "A Heuristic for General Integer

Programming." Decision Sciences, Vol. 5, 1974, pp. 36-44.

Hillier, F.S., and Lieberman, G.J.: "Introduction to Operations Research." Holden-Day, Inc.,

Oakland, California, 1980, pp. 714, 715, and 740.

Cooper, L., and Cooper, M.W." "All-Integer Linear Programming - A New Approach via

Dynamic Programing." Naval Research Logistics Quarterly, Vol. 25, No. 1, 1978, pp.
425-429.

Marsten, R.E., and Morin, T.L.: "A Hybrid Approach to Discrete Mathematical Program-

ming." Mathematical Programming, Vol. 14, 1978, pp. 21-40.

25. Parker, R.G., and Rardin, R.L.: "Discrete Optimization." Academic Press, Inc., Boston,

Massachusetts, 1988, pp. 357-383.

26. Cooper, M.W.: "A Survey of Methods for Pure Nonlinear Integer Programming."

Management Science, Vol. 27, No. 3, 1981, pp. 353-361.

27.

28.

Pegden, C.D., and Petersen, C.C.: "An Algorithm for Solving Integer Programming Problems

With Separable Nonlinear Objective Functions." Naval Research Logistics Quarterly, Vol. 26,

1979, pp. 595-609.

Cabot, V.A., and Erenguc, S.S.: "A Branch-and-Bound Algorithm for Solving a Class of

Nonlinear Integer Programming Problems." Naval Research Logistics Quarterly, Vol. 33,

1986, pp. 559-567.

v_

62



i

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Balas, E.: "Duality in Discrete Programming: The Quadratic Case." Management Science,

Vol. 16, 1969, pp. 14-32.

McBride, R.D., and Yormark, J.S.: "An Implicit Enumeration Algorithm for Quadratic

Integer Programming." Management Science, Vol. 26, No. 3, 1980, pp. 282-296.

Volkovich, O.V., Roshchin, V.A., and Sergienko, I.V.: "Models and Methods of Solution of

Quadratic Integer Programming Problems." Cybernetics, Vol. 23, No. 3, 1987, pp. 289-305.

Wagner, H.M., Giglio, R.J., and Glaser, R.G.: "Preventive Maintenance Scheduling by

Mathematical Programming." Management Science, Vol. 10, No. 2, 1964, pp. 316-334.

Giglio, R.H., and Wagner, H.M." "Approximate Solutions to the Three-Machine Scheduling

Problem." Operations Research, Vol. 12, No. 3, 1964, pp. 305-324.

Bartholdi, J.J.: "A Guaranteed-Accuracy Round-Off Algorithm for Cyclic Scheduling and Set

Covering." Operations Research, Vol. 29, No. 3, 1981, pp. 501-511.

Baum, S., and Trotter, L.E." "Finite Checkability for Integer Rounding Properties in Com-

binatorial Programming Problems." Mathematical Programming, Vol. 22, 1982, pp. 141-147.

Boffey, T.B., and Green, J.R • "Design of Electricity Supply Networks." Discrete Applied

Mathematics, Vol. 5, 1983, pp. 25-38.

Dillon, T.S., and Edwin, K.W.: "Integer Programming Approach to the Problem of Optimal
Unit Commitment With Probabilistic Reserve Determination." IEEE Transactions on Power

Apparatus and Systems, Vol. 97, No. 6, 1978, pp. 2154-2164.

Garver, L.L.: "Transmission Network Estimation Using Linear Programming." IEEE Trans-

actions on Power Apparatus and Systems, Vol. 89, No. 7, 1970, pp. 1688-1696.

Kaltenbach, J.-C., Preschon, J., and Gehrig, E.H.: "A Mathematical Optimization Technique

for the Expansion of Electric Power Transmission Systems." IEEE Transactions on Power

Apparatus and Systems, Vol. 89, No. I, 1970, pp. 113-119.

Tryfos, P.: "An Integer Programming Approach to the Apparel Sizing Problem." Journal of

the Operational Research Society, Vol. 37, No. I0, 1986, pp. 1001-1006.

Cooper, M.W., and Farhangian, K." "An Integer Programming Algorithm for Portfolio Selec-

tion With Fixed Charges." Naval Research Logistics Quarterly, Vol. 29, No. I, 1982, pp.
147-150.

Mehta, R.P." "Optimizing Returns With Stock Option Strategies." Computers and Operations

Research, Vol. 9, No. 3, 1982, pp. 233-242.

Smith, B.M." "IMPACS - A Bus Crew Scheduling System Using Integer Programming."

Mathematical Programming, Vol. 42, 1988, pp. 181-187.

63



44. Dopazo,J.F., and Merrill, H.M.: "Optimal GeneratorMaintenanceSchedulingUsing Integer
Programming."IEEE Transactionson PowerApparatusandSystems,Vol. 94, No. 5, 1975,
pp. 1537-1544.

45. Hooke, R., and Jeeves,T.A.: "A 'Direct Search'Solutionof Numericaland Statistical
Problems." Journalof the Associationof ComputingMachines,Vol. 8, 1961,pp. 212-229.

46. Bazaraa,M., and Shetty,C.M.: "NonlinearProgramming."JohnWiley andSons,New York,
1979,p. 275.

47. Gottfried, B.S., and Weisman,J.: "Introductionto OptimizationTheory." Prentice-Hall,Inc.,
EnglewoodCliffs, New Jersey,1973,p. 117.

48. Foulds, L.R.: "Optimization Techniques:An Introduction." Springer-Verlag,New York,
1981,p. 335.

49. Wismer, D.A., and Chattergy,R.: "Introductionto NonlinearOptimization." North-Holland,
New York, 1978,p. 272.

50. Claycombe,W.W., and Sullivan, W.G.: "Foundationof MathematicalProgramming."Reston
PublishingCo., Inc., Reston,Virginia, 1975,pp. 194-199.

51. Ignizio, J.P.: "On the Establishmentof Standardsfor ComparingAlgorithm Performance."
TIMS Interfaces,Vol. 2, No. 1, 1971,pp. 8-11.

52. McCabe,T.J.: "A ComplexityMeasure."IEEE Transactionson SoftwareEngineering,Vol.
SE-2, No. 4, 1976,pp. 308-320.

53. Lee, C.C., and Lee, D.T.: "A SimpleOn-Line Bin PackingAlgorithm." Journalof the
Associationof ComputingMachinery,Vol. 32, No. 3, 1985,pp. 562-572.

54. Crowder, H.P., Dembo,R.S., and Mulvey, J.M.: "ReportingComputationalExperimentsin
MathematicalProgramming."MathematicalProgramming,Vol. 15, 1978,pp. 316-329.

55. KronsjS,L.J.: "Algorithms: Their Complexityand Efficiency." JohnWiley and Sons,New
York, 1979,pp. 2-5, 13I-136.

56. Hooper,J.W., and Ranganath,H.: University of Alabamain Huntsville ComputerScience
Department,verbal consultationwith authorand JohnN. Lovett, Jr., February22, 1990.

57. Intel Corporation:"Microprocessorand PeripheralHandbook- Vol. 1," 1988,pp. 3.45-3.54,
4. 109-4.122.

58. Motorola, Inc.: MC68010 16-Bit Virtual Memory Microprocessor, 1982, pp. 7-8.

64



BIBLIOGRAPHY

Adby, P.R., and Dempster, M.A.: "Introduction to Optimization Methods." John Wiley and

Sons, New York, New York, 1974.

Avriel, M.: "'Nonlinear Programming." Prentice-Hall, Inc., Englewood Cliffs, New Jersey,
[976.

Balas, E.: "'An Additive Algorithm for Solving Linear Programs With Zero-One Variables."

Operations Research, Voi. 13, No. 4, 1965, pp. 517-548.

Balas, E.: "'Duality in Discrete Programming: The Quadratic Case." Management Science,

Vol. 16, 1969, pp. 14-32.

Balas, E., and Guignard, M.: "Branch and Bound/Implicit Enumeration." Annals of Discrete

Mathematics, Vol. 5, 1979, pp. 185-191.

Balas, E., and Ho, A.: "Set Covering Algorithms Using Cutting Planes, Heuristics, and

Subgradienl Optimization: A Computational Study." Mathematical Programming, Vol. 12, 1980,

pp. 37-60.

Balinski, M.L.: "Integer Programming: Methods, Uses, and Computation." Management

Science, Vol. 12, No. 3, 1965, pp. 253-315.

Bartholdi, J.J.: "A Guaranteed-Accuracy Round-Off Algorithm for Cyclic Scheduling and

Set Covering." Operations Research, Vol. 29, No. 3, 1981, pp. 501-511.

Baum, S., and Trotter, L.E.: "'Finite Checkability for Integer Rounding Properties in

Combinatorial Programming Problems." Mathematical Programming, Vol. 22, 1982, pp. 141-147.

Bazaraa, M., and Shetty, C.M.: "'Nonlinear Programming." John Wiley and Sons, New
York, New York, 1979.

Beale, E.M.: "Branch-and-Bound Methods for Mathematical Programming Systems." Annals

of Discrete Mathematics, Vol. 5, 1979, pp. 201-219.

Beale, E.M.: "Integer Programming." Computational Mathematical Programming, Vol. 15,

1985, pp. 1-53.

Beale, E.M.: "The Evolution of Mathematical Programming Systems." Journal of Operations

Research Society, Vol. 36, No. 5, 1985, pp. 357-366.

Benichou, M., Gauthier, J.M., Hentges, G., and Ribiere, G.: "The Efficient Solution of

Large°Scale Linear Programming Problems - Some Algorithms, Techniques, and Computational

Results." Mathematical Programming, Vol. 13, 1977, pp. 280-322.

Boffey, T.B., and Green, J.R.: "Design of Electricity Supply Networks." Discrete Applied

Mathematics, Vol. 5, 1983, pp. 25-38.

Bradley, G.H., Wahi, P.N.: "An Algorithm for Integer Linear Programming: A Combined

Algebraic and Enumeration Approach." Operations Research, Vol. 21, No. 1, 1973, pp. 45--60.

Budnick, F.S., Mojena, R., and VoIImann, T.: "Principles of Operations Research for

Management." Richard D. Irwin, Inc., Homewood, Illinois, 1977.

Bunday, B.D.: "BASIC Optimization Methods." Edward Arnold Publishing, Baltimore,

Maryland, i 984.

Bunday, B.D., and Garside, G.R.: "Optimization Methods in PASCAL." Edward Arnold

Publishing, Baltimore, Maryland, 1987.

Cabot, A.V., and Erenguc, S.S.: "A Branch and Bound Algorithm for Solving a Class of

Nonlinear Integer Programming Problems." Naval Research Logistics Quarterly, Vol. 33, 1986, pp.
559-567.

65



Claycombe, W.W., and Sullivan, W.G.: "Foundations of Mathematical Programming."

Reston Publishing Co., Inc., Reston, Virginia, 1975.

Conley, W.: "Computer Optimization Techniques." Petrocelli Books, Inc., New York, New

York, 1984.

Cooper, L., and Cooper, M.W.: "All-Integer Linear Programming - A New Approach Via

Dynamic Programming." Naval Research Logistics Quarterly, Vol. 25, No. 1, 1978, pp. 415-429.

Cooper, M.W.: "A Survey of Methods for Pure Nonlinear Integer Programming."

Management Science, Vol. 27, No. 3, 1981, pp. 353-361.

Cooper, M.W.: "Nonlinear Integer Programming for Various Forms of Constraints." Naval

Research Logistics Quarterly, Vol. 29, No. 4, 1982, pp. 585-592.

Cooper, M.W., and Farhangian, K.: "An Integer Programming Algorithm for Portfolio

Selection With Fixed Charges." Naval Research Logistics Quarterly, Vol. 29, No. 1, 1982, pp.
147-150.

Crowder, H.P., Dembo, R.S., and Mulvey, J.M.: "Reporting Computational Experiments in

Mathematical Programming." Mathematical Programming, Vol. 15, 1978, pp. 316-329.

Dakin, R.T.: "A Tree Search for Mixed Integer Programming Problems." The Computer Jo-

urnal, Vol. 8, 1965, pp. 250-255.

Dillon, T.S., and Edwin, K.W.: "Integer Programming Approach to the Problem of Optimal

Unit Commitment With Probabilistic Reserve Determination." IEEE Transactions on Power

Apparatus and Systems, Vol. 97, No. 6, 1978, pp. 2154-2164.

Driebeck, N.: "An Algorithm for the Solution of Mixed Integer Programming Problems."

Management Science, Vol. 12, No. 7, 1966, pp. 576-587.

Dopazo, J.F., and Merrill, H.M.: "Optimal Generator Maintenance Scheduling Using

Integer Programming." IEEE Transactions on Power Apparatus and Systems, Vol. 94, No. 5,

1975, pp. 1537-1544.

Echols, R.E., and Cooper, L.: "Solution of Integer Linear Programming Problems by Direct

Search." Journal of the Association for Computing Machinery, Voi. 15, No. I, 1968, pp. 75-84.

Ecker, J.G., and Kupferschmid, M.: "Introduction to Operations Research." John Wiley and

Sons, New York, New York, 1988.

Edler, J., Nikiforuk, P.N., and Tinker, E.B.: "A Comparison of the Performance Tech-

niques for Direct, On-Line Optimization." The Canadian Journal of Chemical Engineering, Vol.

48, 1970, pp. 432-440.

Evans, J.R.: "Structural Analysis of Local Search Heuristics in Combinatorial Optimiza-

tion." Computers and Operations Research, Vol. 14, No. 6, 1987, pp. 465-477.

Faaland, B.H., and Hillier, F.S.: "Interior Methods for Heuristic Integer Programming

Procedures." Operations Research, Vol. 27, No. 6, 1979, pp. 1069-1087.

Fogiel, M.: "The Operations Research Problem Solver." Research and Education Associa-

tion, New York, New York, 1987.

Foulds, L.R.: "Optimization Techniques: An Introduction." Springer-Verlag, New York,

New York, 1981.

Gabbani, D., and Magazine, M.: "An Iterative Heuristic Approach for Multi-Objective

Integer-Programming Problems." Journal of the Operations Research Society, Vol. 37, No. 3,

1986, pp. 285-291.
Garfinkel, R.S., and Nemhauser, G.L.: "Integer Programming." John Wiley and Sons, Inc.,

New York, New York, 1972.

Garver, L.L.: "Transmission Network Estimation Using Linear Programming." IEEE Trans-

actions on Power Apparatus and Systems, Vol. 89, No. 7, 1970, pp. 1688-1696.

r_

66



Geoffrion, A.M.: "An Improved Implicit Enumeration Approach for Integer Programming."

Operations Research, Vol. 17, 1969, pp. 437-454.

Geoffrion, A.M., and Marsten, R.E.: "Integer Programming Algorithms: A Framework and

State-of-the-Art Survey." Management Science, Vol. 18, No. 9, 1972, pp. 465-491.

Giglio, R.J., and Wagner, H.M.: "Approximate Solutions to the Three-Machine Scheduling

Problem." Operations Research, Vol. 12, No. 3, 1964, pp. 305-324.

Glover, F.: "'A Multi-Phase Dual Algorithm for the Zero-One Integer Programming

Problem." Operations Research, Vol. 13, No. 6, 1965, pp, 879-929.

Glover, F.: "Improved Linear Integer Programming Formulations of Nonlinear Integer

Problems." Management Science, Vol. 22, No. 4, 1975, pp. 455-460.

Glover, F.: "'Reducing the Size of Some IP Formulations by Substitution." Operational

Research Quarterly, Vol. 27, No. i, 1976, pp. 261-263.

Gomory, R.E.: "An Algorithm for Integer Solutions to Linear Programs." Recent Advances

in Mathematical Programming, Graves and Wolfe, eds., McGraw-Hill, New York, New York,

1963.

Gondran, M., and Simeone, B.: "Cutting Planes." Annals of Discrete Mathematics, Vol. 5,

1979, pp. 193-194.

Gottfried, B.S., and Weisman, J.: "Introduction to Optimization Theory." Prentice-Hall,

Inc., Englewood Cliffs, New Jersey, 1973.

Greenberg, H.J.: "Design and Implementation of Optimization Software.'" Sijthoff and

Noordhoff, The Netherlands, 1978.

Gupta, O.K., and Ravindran, A.: "Branch and Bound Experiments in Convex Nonlinear

Integer Programming." Management Science, Vol. 31, No. 12, 1985, pp. 1533-1546.

Healy, W.C.: "Multiple Choice Programming." Operations Research, Vol. 12, 1964, pp.

122-138.

Hillier, F.S.: "'Efficient Heuristic Procedures for Integer Linear Programming With an

Interior." Operations Research, Vol. 17, 1969, pp. 600-637.

Hillier, F.S., and Lieberman, G.J.: "Introduction to Operations Research." Holden-Day,

Inc., Oakland, California, 1980.

Himmelblau: "Applied Nonlinear Programming." McGraw-Hill Book Co., New York, New

York, i 972.

Hooke, R., and Jeeves, T.A.: "A 'Direct Search" Solution of Numerical and Statistical

Problems." Journal ot the Association of Computing Machines, Vol. 8, 1961, pp. 212-229.

Hooper, J.W., and Ranganath, H.: University of Alabama in Huntsville Computer Science

Department, verbal consultation with author and J.N. Lovett, Jr., February 22, 1990.

Hu, T.C.: "'Integer Programming and Network Flows." Addison-Wesley Publishing Co.,

Reading, Massachusetts, 1970.

lgnizio, J.P.: "On the Establishment of Standards for Comparing Algorithm Performance."

TIMS Interfaces, Vol. 2, No. 1, 1971, pp, 8-11.

Intel Corporation: "Microprocessor and Peripheral Handbook, Vol. 1.'" Intei Corp., Santa

Clara, California, 1988.

Jacoby, S.L., Kawalik, J.S., and Pizzo, J.R.: "lterative Methods for Nonlinear Optimization

Problems." Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1972.

Jeroslow, R.G.: "There Cannot Be Any Algorithm for Integer Programming with Quadratic

Constraints." Operations Research, Vol. 21, No. 1, 1973, pp. 221-224.

Kabe, D.G.: "On Solving Integer Programming Problems." The Journal of Industrial Mathe-

matics Society, Vol. 32, No. 2, 1982, pp. 103-123.

6Y



Kaltenbach, J.-CI, Peschon, J., and Gehrig, E.H.: "A Mathematical Optimization Technique

for the Expansion of Electric Power Transmission Systems." IEEE Transactions on Power

Apparatus and Systems, Vol. 89, No. I, 1970, pp. 113-119.

Kennedy, D.: "Some Branch and Bound Tcchniques for Nonlinear Optimization." Mathe-

matical Programming, Vol. 42, 1988, pp. 147-157.

Kochenberger, G.A., McCarl, B.A., and Wyman, F.P.: "A Heuristic for General Integer

Programming." Decision Sciences, Vol. 5, 1974, pp. 36-44.

Kt_rner, F.: "A New Branching Rule for the Branch and Bound Algorithm for Solving Non-

linear Integer Programming Problems." BIT, Vol. 28, No. 3, 1988, pp. 701-708.

Kreuzberger, H.: "Numerische Erfahrungen mit einem heuristischen verfahren zur L6sung

ganzzahliger linearer optimierungsprobleme." Electronishe Daten-verarbeitung, Heft 7/1970, Seiten
289-306.

KronsjS, L.I.: "Algorithms: Their Complexity and Efficiency." John Wiley and Sons, New

York, New York, 1979.

Kunzi, H.P., Tzschach, H.G., and Zehnder, C.A.: "Numerical Methods of Mathematical

Optimization." Academic Press, New York, New York, 1971.

Land, A., and Doig, A.: "An Automatic Method for Solving Discrete Programming

Problems." Econometrica, Vol. 28, No. 3, 1960, pp. 497-520.

Lau, H.T.: "Combinatorial Heuristic Algorithms With FORTRAN." Springer-Verlag, New

York, New York, 1986.

Lawler, E.L., and Bell, M.D.: "A Method for Solving Discrete Optimization Problems."

Operations Research, Vol. 14, 1966, pp. 1098-1112.

Lawrence, J.P., and Steiglitz, K.: "Randomized Pattern Search." IEEE Transactions on

Computers, April 1972, pp. 382-385.

Lee, C.C., and Lee, D.T.: "A Simple On-Line Bin Packing Algorithm." Journal of the

Association of Computing Machinery, Vol. 32, No. 3, 1985, pp. 502-572.

Lemke, C., and Spielberg, K.: "Direct Search Algorithm for Zero-One and Mixed Integer

Programming." Operations Research, Vol. 15, No. 5, 1967, pp. 892-914.

Lev, B., and Weiss, H.J.: "Introduction to Mathematical Programming." North Holland,

New York, New York, 1982.

Lin, B.W., and Rardin, R.L.: "Controlled Experimental Design for Statistical Comparison

of Integer Programming Algorithms." Management Science, Vol. 25, No. 12, 1980, pp.

1258-1271.

Little, J.K., Murty, D.S., and Karel, C.: "An Algorithm for the Traveling Salesman

Problem." Operations Research, Vol. 11, No. 5, 1963, pp. 892-914.

Llewellyn, R.W.: "Linear Programming." Holt, Rinehart, and Winston, Inc., New York,

New York, 1964.

Markowitz, H.M., and Manne, A.S.: "On the Solution of Discrete Programming Problems."

Econometrica, Vol. 25, No. I, 1957, pp. 84-110.

Marsten, R.E., and Morin, T.L.: "A Hybrid Approach to Discrete Mathematical Program-

ming." Mathematical Programming, Vol. 14, 1978, pp. 21-40.

McBride, R.D., and Yormark, J.S.: "An Implicit Enumeration Algorithm for Quadratic

Integer Programming." Management Science, Vol. 26, No. 3, 1980, pp. 282-296.

McCabe, T.J.: "A Complexity Measure." IEEE Transactions on Software Engineering, Vol.

SE-2, No. 4, 1976, pp. 308-320.

McMillan, C.: "Mathematical Programming." John Wiley and Sons, Inc., New York, New

York, 1975.

r_

k.

68



Mehta, R.P.: "Optim!zing ReturnsWith StockOption Strategies."Computersand Opera-
tions Research,Vol. 9, No. 3, 1982,pp. 233-242.

Motorola, Inc.: "MC68010 16-BitVirtual Memory Microprocessor."Motorola, Inc., Austin,
Texas, 1982.

Nauss,R.M.: "On the Useof InternalRateof Return in Linear and IntegerProgramming."
OperationsResearchLetters,Vol. 7, No. 6, 1988,pp. 285-289.

Nemhauser,G.L., andWolsey, L.A.: "Integer and CombinatorialOptimization." John
Wiley and Sons, Inc., New York, New York, 1988.

Onyekwelu, D.C.: "ComputationalViability of a ConstraintAggregationSchemefor Integer
Linear ProgrammingProblems."OperationsResearch,Vol. 31, No. 4, 1983,pp. 795-801.

Ozan, T.M.: "Applied MathematicalProgrammingfor Productionand Engineering
Management."Prentice-Hail,Inc., EnglewoodCliffs, New Jersey,1986.

Papadimitriou,C.H., and Steiglitz, K.: "CombinatorialOptimization." Prentice-Hall,Inc.,
EnglewoodCliffs, New Jersey, 1982.

Parker,R.G., and Rardin, R.L.: "DiscreteOptimization." AcademicPress,Inc., New York,
New York, 1988.

Pearl, J.: "KnowledgeVersusSearch:A QuantitativeAnalysisUsing A*." Artificial Intelli-
gence,Vol. 20, 1983,pp. 1-13.

Pegden,C.D., and Petersen,C.C.' "An Algorithm for Solving IntegerProgramming
ProblemsWith SeparableNonlinearObjectiveFunctions."Naval ResearchLogisticsQuarterly, Vol.
26, 1979.pp. 595-609.

Rao, S.S.: "Optimization: Theoryand Applications." JohnWiley and Sons,New York,
New York, 1984.

Reiter, S., and Sherman,G.: "DiscreteOptimizing." Journalof the Society for Industrial
andApplied Mathematics,Vol. 13, No. 3, 1965,pp. 864-889.

Reiter, S., and Rice, D.B.: "Discrete Optimizing SolutionProceduresfor Linearand Non-
linear IntegerProgrammingProblems."ManagementScience,Vol. 12, No. I!, 1966,pp.
829-850.

Roth, R.H.: "An Approachto Solving Linear DiscreteOptimizationProblems."Journalof
the Associationfor ComputingMachinery,Vol. 17, No. 2, 1970,pp. 303-313.

Salkin, H.M.: "Integer Programming."Addison-WesleyPublishingCo., Reading,
Massachusetts,1975.

Sharma,J., and Venkatsewaran,K.V.: "A Direct Methodfor Maximizing the SystemReli-
ability." IEEE Transactionson Reliability, Vol. R-20, No. 4, 1971,pp. 256-259.

Sherali, H.D., Staschus,K., and Haucuz,J.M.: "An IntegerProgrammingApproachand
Implementationfor an Electric Utility CapacityPlanningProblemWith RenewableEnergy
Sources."ManagementScience,Vol. 33, No. 7, 1987,pp. 831-847.

Smith, B.M.: "IMPACS - A Bus Crew SchedulingSystemUsingIntegerProgramming."
MathematicalProgramming,Voi. 42, 1988,pp. 181-187.

Song,H.: "Optimum DecisionTree DevelopmentUsing Entropy." Ph.D. Dissertation,
University of Alabamain Huntsville, 1989.

Spielberg,K.: "EnumerativeMethodsin IntegerProgramming."Annalsof DiscreteMathe-
matics, Vol. 5, 1979,pp. 139-183.

Sweeney,D.J., and Murphy, R.A.: "A Methodof Decompositionfor IntegerPrograms."
OperationsResearch,Vol. 27, No. 6, 1979,pp. 1128-1141.

Syslo, M.M., Deo, N., and Kowalik, J.S.: "Discrete OptimizationAlgorithms." Prentice-
Hall, Inc., EnglewoodCliffs, New Jersey,1983.

69



Taha, H.A.: "Operations Research: An Introduction." MacMillan Publishing Co., New

York, New York, 1987.

Taha, H.A.: "Integer Programming - Theory, Applications, and Computations." Academic

Press, New York, New York, 1975.

Tillman, F.A., and Littschwager, J.M.: "Integer Programming Formulation of Constrained

Reliability Problems." Management Science, Vol. 13, No. 11, 1967, pp. 887-899.

Tomlin, J.A.: "An Improved Branch-and-Bound Method for Integer Programming." Opera-

tions Research, Vol. 19, No. 4, 1971, pp. 1070-1075.

Trauth, C.A., and Woolsey, R.E.: "Integer Linear Programming: A Study in Computational

Efficiency." Management Science, Vol. 15, No. 9, 1969, pp. 481-493.

Tryfos, P.: "An Integer Programming Approach to the Apparel Sizing Problem." Journal of

the Operational Research Society, Vol. 37, No. 10, 1986, pp. 1001-1006.

Volkovich, O.V., Roshchin, V.A., and Sergienko, I.V.: "Models and Methods of Solution

of Quadratic Integer Programming Problems." Cybernetics, Vol. 23, No. 3, 1987, pp. 289-305.

Wagner, H.M., Giglio, R.J., and Glaser, R.G.: "Preventive Maintenance Scheduling by

Mathematical Programming." Management Science, Voi. 10, No. 2, 1964, pp. 316-334.

Wismer, D.A., and Chattergy, R.: "Introduction to Nonlinear Optimization." North-Holland,

New York, New York, 1978.

Wood, C.F.: "Application of 'Direct Search' to the Solution of Engineering Problems."

Westinghouse Resources Laboratory Science Paper, 6-41210-1 -PI, 1960.

Young, R.D.: "A Simplified Primal (All-Integer) Integer Programming Algorithm." Opera-

tions Research, Vol. 16, 1968, pp. 750-782.

Zionts, S.: "Linear and Integer Programming." Prentice-Hall, Inc., Englewood Cliffs, New

Jersey, i 974.

v_

v_

70



APPENDIX A

FRACTIONAL CUT AND BRANCH-AND-BOUND EXAMPLES

71



Fractional Cut Alqorithm

each one of the constraints must be an integer•

ple, the constraint

i/2x I + 2/3x 2 _ 7/3

must be transformed into 3x I + 4x 2 _ 14

The first requirement of using a fractional cut algo-

rithm is that all the coefficients and the RHS constant of

For exam-

so that no

fractions are present• This is imposed due to the algorithm

requirement that both regular and slack variables must be

integer values.

The next step is to solve the problem as a regular lin-

ear programming problem. Once this is done, then we have a

final optimal tableau for the linear program in the follow-

ing form:

Basis

xI

xi

X m

zj

x I .... xi .... xm w I .... wj .... wn

1 .... 0 .... 0 ml I "'" _I

• • • e 0

0 1 0 mi I _i j _i n

• • • e • •

..... j0 .... 0 .... 1 1 n
OEm .., Ocm ... Ot

0 .... 0 .... 0 cI .... cj .... cn

RHS

m

_0

The variables xi (i=1,2 ..... m) represent the basic var-

iables and the variables wj (j=l,2, .... n) represent the non-

basic variables of the optimal solution. 8i (i=l,2,...,m)

are the right hand side values (solutions) to the \

72



17

corresponding variables in the "Basis" column. 80 is the

present value of the objective function. The Zj row con-

tains the sensitivity coefficients for each of the varia-

bles. The values eiJ (i=i,2 ..... m and j=l,2 ..... n) are the

slack variable coefficients of the constraints.

Let 8 i = [S i] + fi' eiJ = [ei j] + fij

where N = [a] is the largest integer such that N _ a.

Therefore, 0<fi<l and 0_fij<l_ In other words, fi is a

positive fraction and fij is a nonnegative fraction.

Consider the example

a = 3/2

a = -7/3

[a] : i fi : i/2

[a] = -3 fi = 2/3

The source row will be

rl n

fi - Z fijwj = x i - [8 i] + Z [ei]wj
j=l j=l

Since x i, [8i], [ei] and wj are integers, the RHS must also

be integer as well as the LHS,

n

or fi - Z fijwj _- 0
j=l

n

Z fijwj - fi -_ 0
j=l

We have a CUT i as a nonnegative slack variable which by

definition must be an integer. This constraint equation is

the fractional cut.

CUT i = Z fijwj - fi (AI)

73



The algorithm is called a fractional method because all the

nonzero coefficients of the generated cut are less than 1.

Two major drawbacks to the fractional method are

i. Roundoff errors may yield incorrect optimal solu-
tions.

2. Ail solutions are infeasible (noninteger) until

the optimal is reached.

The above fractional cut equation can be utilized for every

row in the tableau. The strongest cut or largest fi value

is generally used. This is determined by operating rules

such as the choice of the CUT i having

max(f i )

Lastly, we apply the dual simplex method to obtain an

optimal solution.

The following stopping rule for Fractional Cut is em-

ployed: If the new solution is an integer one, stop. If

not, construct new CUT i for the remaining rows and apply the

best one to a new row and repeat the algorithm. The follow-

ing example from Ozan [16] illustrates the fractional cut

procedure:

74

Maximize Z = _(xl,x2,x 3) = 2x I + x 2 + 2x 3

Subject to 2x1 ÷ x2 + x3 9
x 1 + 2x 2 + 3x 3 8

x 1, x 2, x 3 • 0 and integer

Step 1. Solve for optimal (noninteger) solution.



I ,

0

0

I
Basis I

Sl I 2

s2 I 1

Z I -2

sI

Ol o
s2 I Sol

o [ 9

Ol o

II.

Basis I

, 2 1 i 1 2 1I

x].! =_! "_ 1
IQI]./_I o 1
l'/_l_"_l _ I
l-,_/_l,/_! o I

0 s I

2 x 3

Z

o 1 o 11 o

Sl I s2 I Sol

]. ]-_,,3 I 19,,3

III . !_!_1_!OlOl o
Basis I Xl [ x2 [ x3 I Sl I S2 I Sol

"_ ! ] ! ]/_ I o i_,,_ l-]./_ i ]._/_

Therefore, the optimal non-integer solution is

x2:0, x3:7/5, Z:52/5.

Now we apply the cutting procedure.

Xi:19/5,

xI row::> 81 = 19/5 = 3 + 4/5 (fl = 4/5)

_i I = 1/5 = 0 + 1/5 (fll = 1/5)

al 2 = 3/5 = 0 + 3/5 (f12 = 3/5)

el 3 : -1/5 : -1 + 4/5 (f13 : 4/5)

Therefore, CUT 1 = 1/5x 2 + 3/551 + 4/5s 2 - 4/5 ==> CUT 1 -

75



i/5x 2 - 3/5s I - 4/5s 2 = -4/5

x3 row==> _1 = 7/5 = 1 + 2/5

_21 = 3/5 = 0 + 3/5

_22 = -i/5 = -I + 4/5

_23 = 2/5 = 0 + 2/5

(f2 = 2/5)

(f21 : 3/5)

(f22 : 4/5)

(f23 = 2/5)

Therefore,

3/5x 2 - 4/5s I - 2/5s 2 = -2/5

Max(fi) = max(4/5,2/5) = 4/5.

values and apply Dual Simplex.

Therefore, for CUT 1, we have

CUT 2 = 3/5x 2 + 4/551 + 2/552 - 2/5 ==> CUT 2 -

Therefore, use x I row cut

2

Basis I Xl

2 Xl I I

_=L I_o_
CUT1 I 0

z J o

Ratio i -

-]./s o

315 o

_
-z/5
-3

_ I _ I o
x2 ! x3 I Sl

_/_1 o 1_/_
Y__J _L I-Y__

l -3/5

J 4IS

0

s2

-115

2/s

2/5

-415
-z12

o I
CUTI ! Sol

o IZ9/5

o I _/5

z -4/5

o s21s

Basis I

2 xz 1

2 x3 1

0 s2 I

z I

_ I _ 1
x_.1 "_ I

!_/_1
o I _/_ !
o I_/_1
o I_/_1

_ I o i °
x_I -'_1 "_
o I_/,I o

1-_/_ l o
o 1_/,1
o....J_/=! o

o I
CUT1 I Sol

-z/4 ! 4

1/2 I 1

-5/4 I ].

]./2 ] 1o

76



All positive integers are obtained, so the optimal solution

is reached. Hence, the solution in integer values for the

problem is xI = 4, x2 = 0, x3 = 1 and Z = 10.

Branch and Bound Example

Using the same continuous optimal solution we obtained

from our Fractional Cut example, we have

Maximize

Subject to

Z : _(Xl,X2,X 3) = 2x I + x 2 + 2x 3

2x I + x2 + x 3 _ 9

x I + 2x 2 + 3x 3 _ 8

xI, x2, x3 E 0 and integer

xI = 19/5, x 2 = O, x 3 = 7/5, Z : 52/5

Since x I and x3 are fractional, either can be selected to

generate subproblems.

Let us use x I ==> either xI _ 3 or xI • 4.

(3)

(z)

Z : 52/5 !xI = 19/5, x 3 : 7/5

] ( 2 )

lxz->41

(2)
I I

Put I xl z 4 I into the optimal continuous

tableau ==> -x I _ 4.

??



,..,i. l"1 1 "' 1 x_1 ",. I "' 1 "_ I '°'
' ",. ! 11 "/'_! o 1_/5 i-1/s I o ! ,.,is

_ "__J._°_1.__/__J._'-_1-"/__J._"_1 3_ .I.'_/__
o ,,_ i-,! o ! o i o ! o 1 , I-,,

" i °1 ,/s I o i,,/_ ! _,,_1 o 1_./5

kpplying Dual Simplex,

Basis !

2 xl l

2 x3 [

0 s3 I

_ ! , ! _ !
", I x, I x, I
_ 1_/' I °
o l _/' i
o 1 '/_ 1 o
° 1_/_ I °
-I - I -

o ! o I
"_ I "_ i

I _/_I-_/_1
l -_/_l _/_I
! _/_I-_/_1
! _/_I _/_!
I - I -i121

o I
s 3 J Sol

0 J 1915

o 1 "i/5

1 J -1/5

0 [ 52/5

- I

Basis J

1121 o I o I

0

0

1

0

o i

,, !-31

o I
s3 l Sol

I-_l _

I - !

(2) Optimal and Feasible: x I = 4, x 3 = 1, x 2 = 0, Z = 10

(3) Put [ xl _-3 ' into the tableau.
i !

78



I
Basis I

2 Xl I

2 x 3

211
Xl ] x2

i I 115

I 0 13/s

1211 ° 1 °

[ x3 ! s]. I 32

l o [3/s i-z/s

I ]. I-]./5 ] 2/5

IOl
I s_i sol

0 s3
_ _ 0 _ 0 _ 0 _ 0 _ i i_ _ 3 _

o 1_/, IO I_/, l_/_ ! o l,_/,
I - I - I- I-3/41 - I - I

new s 3 row = (1,0,0,0,0,1,3) - (1)(I,1/5,0,3/5,-1/5,0,19/5)

1 _ ! _ !
Basis ] xl ] x2 !

x_ ! _ 1 o I
2 x 3 1 0 [2/3[

o ,_ 1°! _/_!

2 I
xsJ

° 1

°1
° I

° I °lO !
51I 32! _3l sol
°i°1113

! 1/3 j-1/315/3

l-_/_ l-_/_I.l_
I _/_l'/_ 1_/_

Optimal but noninteger -- Branch againt

(5)

(3)

J Z = 28/3 !X 1 = 3, X3 = 5/3

I

(4)

(4) x 3 • 2 ==> -x 3 _ -2

?9



2 xl I

osl I

"_ I "_ l
_ I o I
o l_!_l
o I_131

,31 ,II
° I ° I
I I o

o l 1

_. I o

_-_->

I-I-I -I

"_ I "_ I
° 1 _ I

I _/_I-_/_1
! -_/_ I-_/_ 1

s4 I Sol

o I 3

o ] ,513

0 ] 413

- !-, I - J

(o,o,-z,o,o,o,].,-2)-
(-1) (o,2/3,1,o,1/3,-1/3,o,5/3)

= (0,2/3,0,0,1/3,-1/3,1,-1/3)

%

Basis J

2 xl [

2x3J

o"1 I

"11"21
112[
ojoj
o1-3 I

o1-_ I
°1_ !

x3 Sl l

o o [

l o j

o i ]

o o l

o o ]

s2 ! s3

-1

2

0 3

0 -1

0 -5

1 -3 J

0 4 J.

s 4 [ Sol

J _
] _

1

8

%

Feasible but x0 < x0 Q (2).

Therefore, best is still x I = 4, x 3 = 1, x 2 = 0, Z = 10.

Using Branch (5) x 3 • i and using (3) as initial tab-

leau we have

80



Basis J

2 xI I I

2 x3 I 0

0 sI I 0

"_I "_I _ I
I ° I ° I
I_I_I_ I
L_I_Io I

o I
0

1

o _,__! °WI _
/

Ratio _ 1/3 _
-213

_/_1,/_ I o l_o/_

\
New s 4 : (0,0,1,0,0,0,1,1)-(1)(0,213,1,0,1/3,-113,0,513)

Basis [ xl [ x2 ] x3 I sl [ s2 [ s3 [

_!_1OlOl o ! o1_ i
2x3lOlOl]" I 0 I 010 !

oszlOlO !

I-x2 J o ! ]- 1

,. IOlOl

s 4 [ Sol

z ] z

o ! _ I -_/_!-_/_ !-_/_I
o 1 o ! _/_ i-_/_ I-_/_!
o ! °I _/_1_/_1_/_i

Feasible solution xI = 3, x2 = i, x3 = I, Z = 9

But it still does not improve Z = I0, xI = 4, x2 = 0,

x3 = I. Therefore, optimal and Best Solution is xI = 4,

x2 = O, x3 = I, Z = i0 (found with Branch (2)).

81



_L

r_



J

APPENDIX B

IESIP PASCAL COMPUTER CODE

PRECEDING PAGE BLANK NOT FILMED
83



PROGRAM IESIP;

CONST

{ The maximum number of variables plus 3. j
MAXVAR = 33;

TYPE

{ Datarec will hold a node and pointers to the next
and previous node on the linked list. }

Recptr = ^Datarec;
Datarec = Record

Value : Array [1..MAXVAR] of Real;

Previous : Recptr;

: RecptrNext

END;
Inrec

Value

END;

= Record

: Array [i..80] of Char;

Listptr : ^Listrec;

{ Listrec will hold pointers, one to a node entry, and
one each to the next and previous elements on the

linked list. }
Listre¢ = Record

Value : Recptr ;

Previous : Listptr;

Next : Listptr ;

END;
VAR

(Boolean variables}

Chkpar : Boolean;

Cmderr : Boolean;
Datafile : Boolean;

Dispex : Boolean;
Finish : Boolean;
Maxmin : Boolean;
Oddeven : Boolean;

Opf lag : Boolean;
Parserr : Boolean;
Parfound : Boolean;

Shortcut : Boolean;

Stype : Boolean;

{Integer variables}

Calnum : Integer;

Numex : Integer;
Numline : Integer;
Numofvar : Integer;

(Real variables}
Numadd : Real ;
Numcomp : Real;
Nummult : Real ;
Rdadd : Real;
Rdcomp : Real ;

Rdmult : Real;

Valex : Real;
(String and Char variables}

Filename : String[32];

84



Filevar : Text;

Helpvar : Text;
Online : String[80];
Yesno : Char;

(Pointers variables}
Bestsol : Recptr;

Bestlist : Listptr;

Confun : Recptr;

Consol : Recptr;

Currcon : Recptr;

Datafun : Recptr;

Expfun : Recptr;
Listelem : Listptr;

Listone : Listptr;

Listtwo : Listptr;

Lstelem : Listptr;

Opfun : Recptr;
Parlist : Listptr;

Parseline: ^Inrec;

Startfun : Recptr;

PROCEDURE Writefun (Func : Recptr);

{ Write the node with the coefficients followed by the
variable xl ... xN. This procedure is used only to

print the objective and constraint functions. If
printing a constraint function then print the operand

and the constraint value. }

VAR

I : Integer;

BEGIN
For I := 1 to Numofvar Do

BEGIN
If (Func^.Value[l] >= 0) then Write('+');

Write(Func^.Value[I]:0:2);

Write(' X');

Write(I);

Write(' ');

END;
If Not Opflag then
BEGIN

Case Trunc(Func^.Value[MAXVAR-1]) of

i: Write('= ');

2: Write(''= ');

5: Write('< ');
4: Write('<: ');

5: Write('> ');

6: Write('>: ');

END;
Write(Func^.Value[MAXVAR]:0:2)

END;

Writeln(' ')

END;

85



PROCEDUREWritecon (Func : Recptr);
{ Write the rounded continuous solution in the form

(xl, x2, .... xN). This procedure is used only to

print the rounded continuous solution. )
VAR

I : Integer;
BEGIN

Write('(');

For I := 1 to Numofvar -i Do

BEGIN

Write(Trunc(Func^.Value[I]));
Write(', ')

END;

Write(Trunc(FuncA.Value[Numofvar]));
Writeln(')')

End;

PROCEDURE Writeeq (Func : Recptr);

{ Write the node in the form ( xl, x2, .... xN) = value.

In the case where the node did not pass the

constraint's check, the value will be set to C.F. }
VAR

I : Integer;
BEGIN

Write('(');

For I := 1 to Numofvar -1 Do
BEGIN

Write(Trunc(Func^.Value[I]));

Write(', ')

END;

Write(Trunc(Func'.Value[Numofvar]));

Write(') = ');

If (Trunc(Func'.Value[MAXVAR-2]) = I) then

Writeln('C.F.')

else

Writeln(Func*.Value[MAXVAR]:0:3);

END;

PROCEDURE Printproblem;

( Display the initial problem to the used in the form of

problem type, number of variables, objective function,

constraint function(s), and rounded continuous

solution. This display will occur if the initial
information comes from a data file, or at the users

request at the end of the program. }
BEGIN

Writeln(' ');

If Maxmin then

Writeln('Maximization problem')
else

Writeln('Minimization problem'):

Writeln('Number of variables = ', Numofvar);
Writeln(' ');

Writeln('Objective function:');

86



Opflag :: True;
Writefun(Opfun);
Writeln(' ');
Writeln('Constraint function(s):');

Opflag := False;

Datafun := Confun;

While Not (Datafun = Nil) Do

BEGIN

Writefun(Datafun);
Datafun := Datafun_.Next

END;

Write|n(' ');

Writeln('Continuous solution rounded value:');
Writecon(Consol);

Writeln(' ');

END;

PROCEDURE Openhelp;

BEGIN

( Open the he|p file just in case the user needs it. }

Assign(Helpvar, 'IESIP.HLP');

Reset(Helpvar);

END;

PROCEDURE Readhelp(num : Integer);

( Read the help file and look for the help section for a

given number. The help file is a simple ASCII text
file with a record #hum that will denote the start of

the help section for that number. The help section
will then run until another #hUm record is

encountered. }

VAR

Canprint : Boolean;
Done : Boolean;

numon : Integer;

BEGIN

Reset(He]pvar);

Done := False; Canprint := False;

While Not Done Do

BEGIN

Read(Helpvar, Yesno);

If (Yesno = '#') then
BEGIN

If Canprint then Done := True;

Canprint := False;

Readln(Helpvar, numon);

If (numon = hUm) then Canprint := True;
END

Else

BEGIN

Readln(Helpvar, Online);

If Canprint then
BEGIN

Write(Yesno);

87



Writeln(Online);
END;

END;
Done := Done or Eof(HeIpvar);

END;

END;

PROCEDURE Endprogram;
LABEL

l;
VAR

Compsc : Real;
BEGIN

{ If we have a data file open then close it. Ask the

user if they wish to have the problem restated, if so

then display the initial problem. Then list the best
solution(s) found, and give computational results. }

If Datafile then

Close(Filevar);

Writeln(' '1;

1: Writeln('Do you wish to have the problem restated? ');

Write('[y]es/[n]o/[h]eIp default = no ');

Read|n(Yesno);

If ((Yesno = 'y')or(Yesno = 'Y')) then

Printproblem
else If ((Yesno = 'h')or(Yesno = 'H')) then

BEGIN

Readhelp(20);

Goto i;

END;

Writeln(' '1;

Writeln('Best solution(s) found:');

While Not (Bestlist = Nil) Do

BEGIN

Bestsol := BestlistA.Value;

Write (' ');

Writeeq(Bestsoll;
Bestlist := Bestlist^.Mext;

END;

Writeln(' ');

Writeln('Computation of the rounded optimal

solution required:');

Write(' '1;

Write('Additions_ ');

Write(Trunc(Rdadd));

Write(' Multiplications: ');

Write(Trunc(Rdmult));

Write(' Compares: ');

Writeln(Trunc(Rdcomp));

Writeln(' ');

Write(N_unex);

Writeln(' Points were expanded requiring');
Write(' ');

Write('Additions: ');

88



Write(Trunc(Numadd));
Write(' Multiplications: ');
Write(Trunc(Nummult));
Write(' Compares: ');
Writeln(Trunc(Numcomp));
Writeln(' ');
Compsc := Rdcomp + Numcomp + Rdadd * 1.1666 +
Numadd * 1.1666 + Rdmult * 4 + Nummult * 4;

Writeln('Computational complexity score = ', Compsc:0:3);

Writeln(' ');

END;

PROCEDURE Insertcon (Func : Recptr);

{ Insert the constraint function on to the

constraint list. }
BEGIN

If (Currcon = Nil) then
BEGIN

Confun := Func;
Currcon := Func

END

else

BEGIN

Currcon'.Next := Func;

Func_.Previous :ffiCurrcon;

Func^.Next := Nil;
Currcon := Func

END;

END;

PROCEDURE Parse (Func : Recptr);

( Parse a input string for the objective function or a

contraint function. Start by setting all of the

coefficients to zero then process the input string

character by character in the following manner:
(1) If the input character is a number, then multiply

the number thusfar by ten and add the new number.

(2) If the input character is a , then get the next input

string. This will allow function to span more than one

line. (3) If the input character is an operand, then set

the operand field of the node to that operand. If the

input chanacter is a X then set a flag to denote that we

are now looking for the variable number. If the input
character is a field separator space, +, or -,and we

have the coefficient value and the variable number;

then, store the coefficient in the variable. }

LABEL

i;
VAR

Num,Value,Exp,Ten,Unt : Real;

I,J : Integer;

C : Char;

Xfound : Boolean;
BEGIN

89



For I := 1 to MAXVAR do

Func^.Value[I] := 0;
Num := 0;
Xfound := false;

Exp :ffi 1;
Ten := 10.0;
Unt := 1.0;

i: For I := 2 to Length(Online)+l Do

BEGIN
C := Parseline^.Value[I];
Case C of
'0' .. '9': BEGIN

I,I,

I

'X' ,'X'

'=':

'<':
I>|,

I I |_li

If (Num = 0.0) then

Num := Exp * (Ord(c) - Ord('0')) * Unt

else

Num := Exp * Num * Ten + (Ord(C) -
Ord('0')) * Unt;

If Not (Num = 0) then Exp := i;

If (Unt < i) then Unt := Unt / I0.0;

END;

BEGIN
If Datafile then

Readln(Filevar, Online)

else

Readln(Online);

Goto 1

END;

If Not Xfound then

BEGIN
Xfound := True;

Value := Num;

Num := 0;

Ten := I0.0;

Unt := 1.0;

END

else

BEGIN
Parserr := True;

I := 80

END;
Func^.Value[MAXVAR-1] := I;

Func^.Value[MAXVAR-1] :=
Func^.Value[MAXVAR-l] + I;

Func^.Value[MAXVAR-1] := 3;

Func^.Value[MAXVAR-1] := 5;

BEGIN

Exp := I;
If Xfound then

If (Num > 0) then
BEGIN

J := Trunc(Num);

Func^.Value[J] := Value;
Num := O;

Xfound := False
k

9O



w_w _

! | •

else

END;

BEGIN

END
else

BEGIN
Parserr := True;

I := 80

END;

Exp := -I;
If Xfound then

If (Num > 0) then

BEGIN
J := Trunc(Num);
Func^.Value[J] := Value;

Num := 0;

Xfound := False

END

else

BEGIN
PaEserr := TEue;
I := 80

END;

END;
BEGIN

Ten := I;

Unt := 0.i;

END;
BEGIN

I := 80;
If Xfound then

If (Num > 0) then

BEGIN
j := Trunc(num);

Func'.Value[J] := Value

END

else
Parserr := True;

END;

END; { Case )

END; { For loop }
If Xfound then

If (Num > 0) then
BEGIN

J :ffi Trunc(Num);

Func^.Value[J] := Value;
Num := 0;
Xfound := False;

END

else
Parserr :ffiTrue;

If (Func^.Value[ MAxvAR-1] • 0) then

Func^.Value[MAXVAR] := Num

END;

91



FUNCTION Evalfun (Funl, Fun2 : Recptr) : Real;

{ Evaluate a function; we will receive two nodes, one will
contain the coefficients for the variables and the other

will contain the value of the variables. Multiply the
coefficient by the value for each variable and sum the

result. }
VAR

I : Integer;
Num : Real;

BEGIN

Num := O;
For I := 1 to Numofvar Do

Num := Num ÷ Funl".value[I] * Fun2_.Value[I];

Numadd := Numadd + Numofvar - 1;

Nummult := Nummult + Numofvar;

Evalfun := Num;

END;

PROCEDURE Roundcon;

{ Round the continuous solution. The first part of this

procedure will parse the continuous solution using the
same rules for numbers and ; as the previous parse. The

field separator will be a , and cause the value of the
variable to be stored. Once the continuous solution has

been parsed, the solution will be rounded using the
method stated in chapter III of the dissertation. }

LABEL

1,2;

VAR

Num, Ten, Unt, Exp : Real;

Rvalue : Array [1..MAXVAR] of Real;

I,J,K : Integer;

C : Char;

Pass : Boolean;

BEGIN

J := 0;

Num := 0.0;
Ten := I0.0;

Unt := 1.0;

Exp := 1.0;
I: For I:= 3 to 80 Do

BEGIN
C := Parseline_.Value[I];
Case C of
'0' .. '9': BEGIN

If (Num = 0.0) then
Num := Exp * (Ord(c)-Ord('0'))*Unt

else

Num := Exp * Num * Ten +
(Ord(C)-Ord('0'))*Unt;

If Not (Num = 0.0) then Exp := 1.0;

If (Unt < i) then Unt := Unt / I0.0

END;

' '' BEGIN
• l

92



2"

Ten := 1.0;

Unt := 0.i

END;

')' , ',''. BEGIN
J := J + I;

Rvalue[J] := Num;

gum := 0.0;
Ten := i0.0;

Unt := 1.0;

If (C = ')') then I := 80;

END;
'''' BEGIN

F •

If Datafile then

Readln(Filevar, Online)

else

Readln(Online);

Goto 1

END;

' ': I := i;
else BEGIN

Parserr := True;

I := 80

END;

END; { Case}

END; {For loop}

If (J < Numofvar) then Parserr := True;
If Not Parserr then

BEGIN

New(consol);
For I := 1 to Numofvar Do

If Not Maxmin then

Consol^.Value[I] := Trunc(Rvalue[I]) + 1
else if (Rvalue[I] = Int(Rvalue[I])) then

Consol^.Value[I] := Trunc(Rvalue[I]) - 1

else

Consol^.Value[I] := Trunc(Rvalue[I]);
For I := 1 to Numofvar Do

If Consol^.Value[I] < 0 then

Consol^.Value[I] := 0;

Datafun := Confun;

Repeat
Num := Evalfun (consol, Datafun);

Numcomp := Numcomp + i;

Pass := True;

Case Trunc(Datafun^.Value[MAXVAR-l]) of

1: If Not(Num=Datafun^.Value[MAXVAR]) then
Pass := False;

2: If (Num=Datafun^.Value[MAXVAR]) then
Pass := False;

3: If (Num>=Datafun^.Value[MkXVAR]) then
Pass := False;

4: If (Num>Datafun^.Value[MAXVAR]) then

Pass := False;

5: If (Num<=Datafun^.Value[MAXVAR]) then

93



Pass := False;

6 If (Num<Datafun^.Value[MAXVAR]) then
Pass := False;

END; { Case }
If Not Pass then

BEGIN

J :: I;

Num := Datafun^.Value[l];
For I := 2 to Numofvar Do

BEGIN

If Maxmin then

BEGIN

If (Datafun^.Value[I] > Num) then
BEGIN

J := I;

Num := Datafun_.Value[I]

END;

END

else

BEGIN

If (Datafun^.Value[I] < Num) then
BEGIN

J := I;
Num := Datafun^.Value[I]

END;

END

END;
If Maxmin then

Consol'.Value[J] :: Consol^.Value[J] -i
else

Consol^.Value[J] := Consol^.Value[J] + 1;
Num := 0.0;

For I := 1 to Numofvar do

Num := Num + Consol^.Value[I];

If Num > 0 then

Goto 2

else
Parserr := True;

END;
Datafun := Datafun'.Next;

If Parserr then

Datafun := Nil;

Until (Datafun = Nil)
END { No Parse error}

END;

PROCEDURE Initialize;

LABEL

i, 2, 3, 4, 5, 6, 7, 8, 9, i0, ii, 12;
VAR

Done : Boolean;
BEGIN

Openhelp;

{ Find the type of problem that the user wishes to solve. }

94



J f

I: Writeln('Is the objective function to be maximized? ');

Write('[y]es/[n]o/[h]eip default = no ');

Readln(Yesno);

If ((Yesno = 'y')or(Yesno = 'Y')) then
Maxmin := True

else If ((Yesno = 'h')or(Yesno = 'H')) then

BEGIN

Readhelp (17;
Goto i

END

else

Maxmin := False;

{ Find out if the data input is comming from a data file
or the screen. )

2: Writeln('Do you have the functions in a data file? ');

Write('[y]es/[n]o/[h]elp default = no ');

Readln(Yesno);

If ((Yesno = 'y')or(Yesno = 'Y')) then
Datafile :: True

else If ((Yesno : 'h')or(Yesno = 'H')) then

BEGIN

Readhelp (2);
Goto 2

END

else
Datafile := False;

{ If we have a data file, then open the file for input. }

3: If Datafile then

BEGIN

{NOTE: When using IBM DOS, the assign and reset commands
can be used to open any given file. This will be

machine dependent. }

Write('Enter the file? ');

Readln(Filename);

Assign(Filevar, Filename);

Reset(Filevar)

END;

{ Get the number of variables. }
If Datafile then

Readln(Filevar, Numofvar)

else

BEGIN
Write('How many variables are in this problem? ');

Readln(Numofvar)

END;
Parseline := Addr(Online);

Parserr := False;

{ Get the objective function. }
5: If Datafile then

Readln(Filevar, Online)

else

BEGIN

Writeln('Enter the Objective Function/[h]elP ');

Readln(Online)

95



END;
If ((Online = 'h')or(Online ='H')) then

BEGIN

Readhelp(5);
Goto 5;

END;

New(Opfun);

Opflag := True;
Parserr :ffiFalse;

Parse(Opfun);

Done := Parserr;

{ Get the Constraint function(s). }

Opflag := False;

Confun := Nil;

Currcon :ffi Nil;

6: Repeat
If Datafile then

Readln(Filevar, Online)
else

BEGIN

Writeln('Enter the constraint

function/[h]eIp/[q]uit ');

Readln(Online)

END;

If ((Online='h')or(Online='H')) then

BEGIN

ReadheIp(6);
Goto 6;

END;

If (Parseline'.Value[2] = '(') then Done := True;
If ((Parseline^.Value[2]='q')or

(Parse|ineA.Value[2]='Q')) then Done := True;
If Not Done then

BEGIN

New(Datafun);

Parse(Datafun);

Insertcon(Datafun)

END;

Until Done or Parserr;

If Parserr then goto 8;

If (ParselineA.Value[2]='(') then goto 8;

7: Writeln('Enter the optimal continuous

solution/[h]elp ');

Readln(Online);
If ((Online='h')or(Online='H')) then
BEGIN

Readhelp(7);
Goto 7

END;

8: Numadd := 0;

Nummult := 0;

Numcomp := 0;

If Not Parserr then Roundcon;
If Parserr then

96



g

BEGIN

Writeln(' Could not find a rounded solution,
infeasiblity likely.');

Goto 12;

END;
If Datafile then

Printproblem
else

BEGIN

Writeln('Rounded optimal continuous solution');
Writecon(Consol)

END;
9: Writeln('Do you wish to accept this rounded solution?');

Write('[y]es/[n]o/[h]elp default = yes ');

Readln(Yesno);

If ((Yesno = 'h')or(Yesno='H')) then
BEGIN

Readhelp(9);
Goto 9

END

else if (_Yesno = 'n')or<Yesno = 'N')) then

BEGIN

Dispose(Consol);
Writeln('Enter your rounded solution');

Readln(Online);

Roundcon

END;
10: WriteIn('Enter the number of initial expansions');

Writeln('Integer or 0 for help');

Readln(Calnum);

If (Calnum < I) then
BEGIN

Readhelp(10); \\

Goto I0

END;

Ii: Writeln('Do you wish to see the nodes as they
are expanded? '1;

Write('[y]es/[n]o/[h]elp default = no '7;

Readln(Yesno);

If ((Yesno : 'h')or(Yesno='H')) then

BEGIN

Readhe1p(11);
Goto ii

END

else if ((Yesno = 'y')or(Yesno _= 'Y')) then

Dispex := True

else

Dispex := False;
{ Set all of the initial values. )

Parfound := False;

Shortcut := False;

Stype := False;

New(Listone);
Listone^.Value := Consol;

O7



ListoneA.Next := Nil;

Listtwo^.Previous := Nil;

Listtwo := Nil;

Parlist := Nil;
Oddeven := False;

Finish := Parserr;

Rdadd := Numadd;

Rdmult := Nummult;

Rdcomp := Numcomp;

Numadd := 0;

Nummult := 0;

Numcomp := 0;

Numex := 0;

Numline := 0;

Startfun := Consol;

Startfun^.Value[MAXVAR] := Evalfun(Startfun, Opfun);
StartfunA.Value[MAXVAR-2] := 0.0;

Startfun^.Next := Nil;

Startfun^.Previous := Nil;

12: Bestsol := Startfun;

New(Bestlist);
Bestlist^.Value := Bestsol;

Bestlist^.Next := Nil;

Bestlist^.Previous := Nil;

END;

PROCEDURE Copyvar;

{ Copy the value in the node Datafun to the node Expfun. }

VAR

I : Integer;

BEGIN
For I := 1 to Numofvar Do

Expfun^.Value[I] :: Datafun^.Value[I];

ExpfunA.Value[MAXVAR-2] := 0;

Expfun_.Value[MAXVAR-l] := 0;

ExpfunA.Value[MAXVAR] := 0;

END;

FUNCTION Eqfun (Funl, Fun2 : Recptr) : Boolean;
( Compare two nodes if they have equal values for all

variables then return true else false. }

VAR

I : Integer;
BEGIN

Eqfun := True;

For I := 1 to Numofvar do

If Not (Funl'.Value[I] = Fun2^.Value[I]) then

Eqfun := False;

END;

FUNCTION Conchk (Funl : Recptr) : Real;

( Compare a node with the constraints. If the node

passes all of the constraints then return a zero;
if not, then return a one. }

98



VAR

Num : Real;

Fun : Recptr;
BEGIN

Conchk := 0;

Fun := Confun;

While Not (Fun = Nil) DO
BEGIN

Numcomp := Numcomp + i;

Num := Evalfun (Funl, Fun);

Case Trunc(Fun^.Value[MAXVAR-1]) of

i: If Not (Num=Fun^.Value[MAXVAR]) then

Conchk := 1.0;

2: If (Num=Fun^.Value[MAXVAR]) then

Conchk := 1.0;

3: If (Num>=Fun^.Value[MAXVAR]) then

Conchk := 1.0;

4: If (Num>Fun'.Value[MAXVAR]) then

Conchk := 1.0;

5: If (Num<=Fun^.Value[MAXVAR]) then
Conchk := 1.0;

6: If (Num<Fun^.Value[MAXVAR]) then

Conchk := 1.0;
END;

Fun := Fun^.Next;

END;

END;

FUNCTION Searchpar(Funl : Recptr) : Boolean;

{ Search the parent list to see if a node is present.

All nodes are unique, that is if we generate a node
and then later generate the same node then we will

detect this fact and reset to pointer to the first
node that was generated. The parent list is a list

of pointers to nodes that have been expanded, therefore

if we have the same pointer as a member of the list

then we have a parent point. )
VAR

Lstelem : Listptr;
BEGIN

Searchpar := False;
Lstelem := Parlist;

While Not (Lstelem = Nil) do
BEGIN

If (Lstelem^.Value = Fun1) then Searchpar := True;
Lstelem := Lstelem^.Next;

END;

END;

PROCEDURE Insertlist( Fun4 : Recptr);

( Insert the node on the list of nodes to be expanded.

That is, we use two lists, one is the nodes currently
being expanded and the other is the nodes that will

be expanded next time. Also, when inserting the node,

99



maintain the order of the node to be expanded. For

a maximization problem the order is decreasing and
for minimization the order is increasing. }

VAR
Funl : Listptr;
Fun2 : Recptr;
Fun3 : Listptr;
Fun5 : Listptr;
Done : Boolean;

BEGIN
If Oddeven then

Funl := Listone
else

Funl :: Listtwo;

Done := False;

Fun3 := Nil;

While Not (Funl = Nil) and Not Done do
BEGIN

Fun2 := Funl^.Value;

If ((Fun4^.Value[MAXVAR] > Fun2^.Value[MAXVAR])

and Maxmin) or ((Fun4^.Value[MAXVAR] <

Fun2^.Value[MAXVAR]) and Not Maxmin) then

BEGIN

New(Fun5);

Fun5^.Value :: Fun4;
Fun5^.Next := Funl;

Fun5_.Previous := Fun3;

If Not (Fun3 = Nil) then
Fun3^.Next :: Fun5

else

BEGIN

If Oddeven then

Listone := Fun5

else

Listtwo := Fun5;

END;

If Not (Fun1 : Nil) then
Funl^.Previous :: Fun5;

Done := True;

END

else if (Fun4 = Fun2) then Done :: True

else
BEGIN

Fun3 :: Fun1;

Funl :: Funl^.Next;

END;

END;
If Not Done then

BEGIN

New(Fun5);

Fun5^.Value :: Fun4;
Fun5^.Next :: Nil;

Fun5".Previous := Fun3;

If Not (Fun3 = Nil) then
%.

100



Fun3_.Next := Fun5

else

BEGIN
If Oddeven then

Listone :: Fun5

else
Listtwo := Fun5;

END;

END;

END;

PROCEDURE Insertfun;

{ Insert the node on to a master list of all nodes

generated in decreasing order. This procedure will

also determine if the node has been generated before
if so, it will reset the pointer to that first

occurrence. If the node has not been generated before,

then it will be evaluated with the constraint function(s)

to insure that it passes all constraints. Also,
it will determinine if the node should be placed on the

list to be expanded during the next pass. }

LABEL

I;
VAR

Onelst : Recptr;
Twolst : Recptr;

BEGIN

Onelst := Startfun;

Twolst := Nil;

While not (Onelst = Nil) and
(Onelst^.Value[MAXVAR] > Expfun^.Value[MAXVAR]) Do

BEGIN

Twolst := Onelst;

Onelst := Onelst^.Next;

END;
I: If Onelst = Nil then

BEGIN

Expfun^.Value[MAXVAR-2] := Conchk (Expfun);

Expfun^.Previous := Twolst;

Expfun^.Next := Nil;

Twolst^.Next := Expfun;

END

else if (Onelst'.Value[MAXVAR] <

Expfun^.Value[MAXVAR]) then

BEGIN

Expfun^.Value[MAXVAR-2] :: Conchk (Expfun);

Expfun^.Next :: Onelst;

Expfun^.Previous := Twolst;
Onelst^.Previous := Expfun;

If Not (Twolst = Nil) then

Twolst^.Next := Expfun
else

Startfun := Expfun;
END

101



else

BEGIN

If Not Eqfun(Onelst, Expfun) then
BEGIN

Twolst := Onelst;

Onelst := Onelst^.Next;

Goto i;

END;

Dispose(Expfun);
Expfun := Onelst;

END;

If Trunc(Expfun^.Value[MAXVAR-2]) = 0 then
BEGIN

If Not Parfound then

Insertlist(Expfun)

else if Not Searchpar(Expfun) then

if (Expfun^.Value[MAXVAR] = Valex) then

Insertlist(Expfun);

END;

END;

PROCEDURE Stopline;

{ Stop and hold the display until the user enters
a return to continue. }

BEGIN

Write('Press RETURN to continue...');

Readln;

Writeln(' ');

END;

FUNCTION Searchlist (Funl : Recptr) : Boolean;

( Once we have found a parent we will have to evaluate

each of the nodes we are about to expand to determine the

value that will cause the next node to be expanded. This

procedure will take the nodes that will be generated
and check to see if they are on the master list or not.

Next the procedure will determine if the nodes pass
the constraints, thereby allowing us to determine

the cut off value of the nodes that will be

expanded next time. }
LABEL

I, 2;
VAR

Onelst, Twolst : Recptr;
Pass : Boolean;

BEGIN

Searchlist := True;

Onelst := Startfun;

Twolst := Fun1;

While Not (Onelst = Nil) and

(Onelst^.Value[MAXVAR] > Twolst^.Value[MAXVAR]) Do
Onelst := Onelst'.Next;

1: If Onelst = Nil then Goto 2

else If (Onelst^.Value[MAXVAR] <

%

k

%.

102



Twolst_.Value[MAXVAR]) then Goto 2;

If Not Eqfun(Onelst, Twolst) then
BEGIN

Onelst := Onelst^.Next;

Goto i;

END

else
Twolst :: Onelst;

2: Pass := Not Searchpar(Twolst);
If Pass then

Twolst^.Value[MAXVAR-2] := Conchk(Twolst);

If (Twolst^.Value[MAXVAR-2] = 1.0) then

Pass := False;

Searchlist := Pass;

END;

J

FUNCTION Parval (Datafun : Recptr) : Real;

( Determine what is the value that will cause the maximum

gain for the next expansion. That is the node generated
must not be a parent and must pass all constraints. This

will be determined by searchlist. We then will determine

the value that will cause the maximum gain. A maximum

gain must be an improvement over the root node. In
the case where there is more than one node that generates

an improvement, we will take the best improvement. }
VAR

Num, Val : Real;

Fir,Pass : Boolean;

I : Integer;
BEGIN

New(Expfun);

Fir :: True;

Num := 0;
For I :: 1 to Numofvar Do

BEGIN

Copyvar;
If Maxmin then

Expfun^.Value[I] :: Datafun^.Value[I] + 1
else

Expfun^.Value[I] :: Datafun^.Value[I] - i;

If (Expfun^.Value[I] >: 0) then
BEGIN

Val := Evalfun(Expfun, Opfun);

Expfun^.Value[MAXVAR] := Val;

Pass := Searchlist(Expfun);
If Pass then

If Fir then

BEGIN

Num := Val;

Fir := False;
END

else

BEGIN

If ((Val > Num) and Maxmin) or

103



((Val < Num) and Not Maxmin) then
Num := Val;

END;
END;
Copyvar;
If Maxmin then

Expfun^.Value[l] := Datafun^.Value[l] - 1
else

Expfun^.Value[I] :: Datafun^.Value[I] + i;
If (Expfun^.Value[I] >: O) then

BEGIN

Val := Evalfun(Expfun, Opfun);

Expfun^.Value[MAXVAR] := Val;

Pass := Searchlist(Expfun);
If Pass then

If Fir then

BEGIN

Num := Val;

Fir := False;

END

else

BEGIN

If ((Val > Num) and Maxmin) or

((Val < Num) and Not Maxmin) then
Num := Val;

END;

END;

END;

Dispose(Expfun);
Parval :: Num;

END;

PROCEDURE Newbest;

{ If the current node being expanded is a better solution
to the problem, then reset the best solution list to

just that node. )
VAR

Onelist : Listptr;

BEGIN

While Not (Bestlist = Nil) Do

BEGIN
Onelist := Bestlist^.Next;

Dispose(Bestlist);

Bestlist := Onelist;

END;

New(Bestlist);
Bestlist^.Value := Datafun;

Bestlist^.Next := Nil;

Bestlist^.Previous := Nil;

Bestsol := Datafun;

END;

PROCEDURE Addbest;

{ If the current node being expanded has the same

104



value as the best solution, then add it to the best

solution list. }

LABEL

I;
VAR

Onelist : Listptr;
BEGIN

Onelist := Bestlist;

While not (Onelist = Nil) do

BEGIN

If (Onelist^.Value = Datafun) then Goto i;

Onelist := Onelist^.Next;

END;

New(Onelist);

Onelist^.Value := Datafun;

Onelist^.Next := Bestlist;

Onelist^.Previous := Nil;

Bestlist^.Previous := Onelist;

Bestlist := Onelist;

I: Bestlist := Bestlist;

END;

PROCEDURE Expandlist;
{ This is the main work procedure, where the node is

expanded and placed on all the appropriate lists.

First, the node to be expanded is compared with the

best solution, if it is an improvement, then the best
solution list is set to that node. If it is the same

as the best solution, then the node is added to the

best solution list. Next, if we have already found our

first parent then determine the value that will cause an

improvement. The node is univariatly expanded to

identify all possible neighboring solutions. These

node values are copied into a generated node and
checked against the constraints. That is, evaluate the

node, insure that it passes the constraints, insert it
onto the master list of nodes and if it passes the test,

place it on the list of nodes to be expanded next time.

Once we have a node expanded place it on

the parent list so it will not be expanded again. }
VAR

Done : Boolean;

I : Integer;
BEGIN

If Oddeven then

Listelem := Listtwo

else

Listelem := Listone;

Done := (Listelem = Nil);

While Not Done Do

BEGIN

Datafun := Listelem^.Value;

Numex := Numex + I;

If (Bestsol^.Value[MAXVAR] =

105



Datafun^.Vaiue[MAXVAR]) then Addbest;

If Maxmin then

If (Bestsol^.Value[MAX VAR] <

Datafun^.Value[MAXVAR]) then Newbest;
If Not Maxmin then

If (Bestsol_.Value[MAXVAR] >

Datafun^.Value[MAXVAR]) then Newbest;

If Dispex then

BEGIN

Writeln(' ');

Writeln(' ');

Write('Node Expansion (');

Write(Numex);

Writeln(')');

Write(' ');

Numline := Numline ÷ 3;

Writeeq(Datafun)

END;

If Parfound then

BEGIN

Valex := Parval(Datafun);

If ((Datafun^.Value[MAXVAR] > Valex) and Maxmin) or

((Datafun^.Value[MAXVAR] < Valex) and

Not Maxmin) then

Valex := Datafun^.Value[MAXVAR];

END;

For I := 1 to Numofvar Do

BEGIN

If Dispex and (Numline > 20) then

BEGIN

Stopline;

Numline := O;

END;

New(Expfun);

Copyvar;

If Maxmin then

Expfun-.Value[I] := Datafun*.Value[I] + 1
else

Expfun^.Value[i] :: Datafun^.Value[I] - i;

If Not(Expfun^.Value[I] < 0) then

BEGIN

Expfun'.Value[MAXVAR] := Evalfun(Expfun, Opfun);

Insertfun;

If Dispex then

BEGIN

Write(' ');

Writeeq(Expfun);

Numline := Numline + i;

END

END;

If Not Shortcut or

(Trunc(Expfun_.Value[MAXVAR-2]) = i) then

BEGIN

New(Expfun);
k

106



Copyvar;
If Maxmin then

Expfun^.Value[I] := Datafun'.Value[I] - 1
else

Expfun^.Value[I] := Datafun'.Value[I] + I;

If Not (Expfun^.Value[I] < 0) then

BEGIN

Expfun_.Value[MAXVAR] :=

Evalfun(Expfun, Opfun);

Insertfun;

If Dispex then
BEGIN

Write(' ');

Writeeq(Expfun);

Numline := Numline + I;

END

END

END;

If Dispex and (Numline > 20) then
BEGIN

Stopline;

Numline := 0;

END;
END;

Lstelem := Listelem^.Next;

If Not (Parlist : Nil) then

Parlist^.Previous := Listelem;

Listelem^.Next := Parlist;

Listelem^.Previous := Nil;

Parlist := Listelem;

Listelem := Lstelem;

Done := (Listelem = Nil) or Stype;

If Stype then

If Not (Listelem = Nil) then
BEGIN

Expfun :: Listelem^.Value;

If (Expfun^.Value[MAXVAR] =

Datafun^.Value[MAXVAR]) then

Done := False;

END;

If ((3+Numline+2*Numofvar) > 20) and Dispex then
BEGIN

Numline := 0;

Stopline;

END;

END;

While Not (Listelem = Nil) Do
BEGIN

Lstelem := Listelem^.Next;

Dispose(Listelem);

Listelem := Lstelem;

END;
If Oddeven then

Listtwo := Nil

107



else

Listone := Nil;
END;

FUNCTION Allpos(Func : Recptr) : Boolean;

{ Determine if all the coefficients of a function are

positive, if so then return true. }
VAR

I : Integer;
BEGIN

Allpos := True;

For I := i to Numofvar Do

END;
If (Func^.Value[I] < 0) then Allpos := False;

PROCEDURE Switchlist;

( A flag oddeven is used to determine which list is to

be expanded and which list is to be generated. This
procedure will flip the flag, and thereby the list.

BEGIN

If Oddeven then

Oddeven := False
else

Oddeven := True;

END;

PROCEDURE Movelist;

{ Once we have determined that the top node to be expanded
is the first parent we need to remove all other parent

nodes from the list. )
VAR

Lstelem : Listptr;

Funl : Listptr;

Fun2 : Recptr;
BEGIN

If Oddeven then

Listelem := Listtwo

else

Listelem := Listone;

Lstelem := Nil;

While Not (Listelem = Nil) do
BEGIN

Fun2 := Listelem^.Value;

If Not Searchpar(Fun2) then
BEGIN

If Lstelem = Nil then

BEGIN

New(Lstelem);

Lstelem^.Value := Fun2;

Lstelem^.Next := Nil;

Lstelem^.Previous := Nil;
If Oddeven then

Listone := Lstelem

else
k

108



Listtwo := Lstelem;

END

else

BEGIN

New(Funl);
Funl".Value := Fun2;

Funl^.Previous := Lstelem;

Funl^.Next := Nil;

Lstelem^.Next := Funl;

Lstelem := Funl;

END;

END;
Funl := Listelem^.Next;

Dispose(Listelem);
Listelem := Funl;

END;

If Oddeven then

Listtwo :: Nil

else
Listone := Nil;

Switchlist;

END;

PROCEDURE Solveproblem;

{ The main control procedure. This procedure can be
divided into three main sections. The first section

will expand the list using a type I search for the

initial number of times the user requested.

The next section will set the flags so only the first

node is expanded and continue that expansion
until the first node on the list is a parent. The

parents on the remainder of the list will be removed.
The last section will expand the list until

there is not a list to be expanded. }

LABEL i;

VAR

I : Integer;

BEGIN

Chkpar :: False;
For I := 0 to Calnum DO

BEGIN

Expandlist;
Switchlist;
If Oddeven then

Listelem := Listtwo

else
Listelem := Listone;

If (Listelem = Nil) then Goto l;

END;

Chkpar := True;

Stype := True;
Shortcut := Allpos(Opfun);

If Oddeven then

Datafun := Listtwo_.Val ue

109



else

Datafun := Listone^.Value;
While Not Parfound Do

BEGIN

Expandlist;

Switchlist;
If Oddeven then

Listelem := Listtwo

else

Listelem := Listone;

If (Listelem = Nil) then Goto i;

Datafun := Listelem^.Value;

Parfound := Searchpar(Datafun);
END;

Stype := False;

Movelist;
If Oddeven then

Listelem := Listtwo

else

Listelem := Listone;

Shortcut := False;

i: While not (Listelem = Nil) do
BEGIN

Expandlist;
Switchlist;

If oddeven then

Listelem := Listtwo

else

Listelem := Listone;

END;

END;

BEGIN

{ The main procedure first initializes the problem.
If we did not have an error in the

initialization phase then it solves the problem
and prints the results. }

Initialize;
If Not Parserr then

BEGIN

Solveproblem;
Endprogram;

END
else

END.
Writeln('ERROR in input string');

110



APPENDIX C

TEST PROBLEMS

111



Problem # 1 [Claycombe and Sullivan, p. 194]

max

subject to

4,000x I + 7,000x 2

1,200x I + 2,000x 2 _ 6,000
25,000x I + 8,000x 2 _ 20,000

x I, x 2 z 0 and integer

Continuous Solution: (1.739,1.956)
Integer Solution: (5,0)

Problem # 2 [Taha, 1975, p. 175]

max xI + 2x 2

subject to xI + x2 • .9

-2x I - x2 _ .2

x1, x2 a 0 and integer

Continuous Solution: (0,0.9)

Integer Solution: (0,0)

Problem # 3 [Taha, 1987, p. 338]

max 2x I + x2

subject to 10x I + 10x 2 _ 9

10x I + 5x 2 z 1

x1, x 2 z 0 and integer

Continuous Solution: (0.9,0)

Integer Solution: (infeasible)

Problem # 4 [Taha, 1987, p. 86]

max 2x I + 4x 2

subject to xI + 2x 2 _ 5

x I + x2 _ 4

xI, x2 z 0 and integer

Continuous Solution: (0,2.5)

Integer Solution: (1,2)

112

k.



i

Problem # 5 [Zionts, p. 485]

max

subject to

5x I + 2x 2

2x I + 2x 2 • 9

3x I + x 2 S ii

xI, x2 z 0 and integer

Continuous Solution: (3.25,1.25)
Integer Solution: (3,1)

Problem # 6 [Hillier and Lieberman, p. 742]

min 15x I + 10x 2

subject to 3x I + x2 z 6

xI + x2 z 3

xI, x2 z 0 and integer

Continuous Solution: (1.5,1.5)
Integer Solution: (2,1)

Problem # 7 [Salkin, p. 120]

min

subject to

x 1 + x 2

x 1 + 2.5x 2 z 3
x 1 + .4x 2 z 1.2

xI, x2 z 0 and integer

Continuous Solution: (0.8571,0.8571)
Integer Solution: (I,i)

Problem # 8 [Llewellyn, p. 271]

max 2x I + 3x 2

subject to xI + 2x 2 s 8

2x I + x2 _ 6

xI, x2 z 0 and integer

Continuous Solution: (1.33,3.33)

Integer Solution: (0,4)

113



Problem # 9 [Salkin, p. 127]

max

subject to

3x 1 + x 2

2x 1 + 3x 2 _ 36
2x I - 3x 2

x I, x 2 a 0 and integer

Continuous Solution: (2.25,0.50)

Integer Solution: (I,i)

Problem # i0 [Ozan, p. 354]

max

subject to

21x I + 27x 2

-5x I + 15x 2 _ 30

14x I + 2x 2 _ 70

x I, x2 z 0 and integer

Continuous Solution: (4.5,3.5)

Integer Solution: (4,3)

Problem # Ii [Ozan, p. 352]

max

subject to

7x I + 3x 2

-x I + 3x 2 _ 6

7x I + x2 _ 35

x I, x 2 z 0 and integer

Continuous Solution: (4.5,3.5)

Integer Solution: (4,3)

Problem # 12 [Ozan, p. 352]

max

subject to

4x I + 3x 2

4x I + x2 _ i0

2x I + 3x 2 • 8

xI, x2 z 0 and integer

Continuous Solution: (2.2,1.2)

Integer Solution: (2,1)

%

L

114

k_



Problem # 13 [Ozan, p. 352]

min

subject to

2x 1 + 3x 2

2x 1 + 7x 2 Z 12
x 2 • 6

xI, x 2 z 0 and integer

Continuous Solution: (0,1.714)
Integer Solution: (0,2)

Problem # 14 [Ziont, p. 341]

max 5x I + 4x 2

subject to 3x I + 3x 2 s i0

12x I + 6x 2 s 24

xI, x2 z 0 and integer

Continuous Solution: (0.666,2.666)
Integer Solution: (1,2)

Problem # 15 [Hillier and Lieberman, p. 715]

max x I + 5x 2

subject to x I + lOx 2 _ 20

x 1 _ 2

x 1, x 2 z 0 and integer

Continuous Solution: (2.0,1.8)
Integer Solution: (0,2)

Problem # 16 [Ozan, p. 351]

max

subject to

2x 1 + 3x 2

5x 1 - 2x 2 _ 28
x 1 + 2x 2 • 35

x 1, X 2 Z 0 and integer

Continuous Solution: (10.5,12.25)
Integer Solution: (9,13)

115



Problem # 17 [Salkin, p. 119]

min 2x I + 5x 2

subject to 2x I + 2x 2 z 9

2x I + 6x 2 a 22

x1, x2 z 0 and integer

Continuous Solution: (1.25,3.25)

Integer Solution: (2,3)

%

Problem # 18 [Taha, 1987, p. 338]

max xI + x2

subject to 2x I + 5x 2 _ 16

6x I + 5x 2 _ 30

x1, x2 z 0 and integer

Continuous Solution: (3.5,1.8)

Integer Solutions: (5,0); (3,2); (4,1)

Problem # 19 [Ozan, p. 325]

max 2x I + 8x 2

subject to 2x I - 6x 2 s 3

-x I + 4x 2 s 5

2x I + 2x 2 _ 13

x I, x 2 z 0 and integer

Continuous Solution: (4.2,2.3)
Integer Solution: (4,2)

Problem # 20 [Taha, 1975, p. 226]

max 2x I + 4x 2

subject to 2x I + 6x 2 <_ 23

xI - x2 <_ I

xI + x2 <_ 6

x I, x2 Z 0 and integer

Continuous Solution: (3.25,2.75)

Integer Solution: (2,3)

k

116



Problem # 21 [Hillier and Lieberman, p. 743]

max 33x 1 + 12x 2

subject to
-x 1 ++ 2x 2 __ 4
5x 1 . x2 16

2x I - x 2 • 4

xI, x2 z 0 and integer

Continuous Solution: (2.666,1.333)

Integer Solution: (2,3)

Problem # 22 [Taha, 1987, p. 536]

max 2x I + x2 + 2x 3

subject to 2x I + x2 + x 3 • 9

xI + 2x 2 + 3x 3 • 8

x1, x2, x3 z 0 and integer

Continuous Solution: (3.8,0,1.4)

Integer Solution: (4,0,1)

Problem # 23 [Fogiel, p. 520]

max 9x I + 6x 2 + 5x 3

subject to 2x I + 3x 2 + 7x 3 _ 17.50

4x I + 9x 3 s 15

xI, x 2, x 3 a 0 and integer

Continuous Solution: (3.75,3.333,0)
Integer Solution: (3,3,0)

Problem # 24 [Fogiel, p. 200]

max 3x I + 2x 2 + x3

subject to 2x I + 5x 2 + x3 _ 12

6x I + 8x 2 _ 22

xI, x2, x3 a 0 and integer

Continuous Solution: (3.666,0,4.666)

Integer Solution: (3,0,6)

J

117



Problem # 25 [ Lovett]

max

subject to

x I + 2x 2 + 3x 3

xI + 2x 2 + 3x 3 z i0

xI + x 2 s 5

xI • i

xI, x 2, x 3 z 0 and integer

Continuous Solution: (1,4,0.333)

Integer Solutions: (0,5,0); (1,3,1)

%

Problem # 26 [Taha, 1987, p. 337]

max

subject to

4x I + 6x 2 + 2x 3

4x I - 4x 2 • 5

-x I + 6x 2 _ 5

-x I + x2 + x3 S 5

xI, x2, x 3 z 0 and integer

Continuous Solution: (2.5,1.25,6.25)

Integer Solution: (2,1,6)

Problem # 27 [Hillier and Lieberman, p. 746]

max 2.1x I + 1.5x 2 + 1.15x 3

subject to 33.5x I + 25x 2 + 17.5x 3 _ 750

x I + x 2 + x 3 _ 30

.6x I + .75x 2 + x3 • 40

xI, x2, x3 z 0 and integer

Continuous Solution: (14.0625,0,15.9375)

Integer Solution: (14,0,16)

Problem # 28 [Ozan, p. 352]

max

subject to

2x I + x2 + 4x 3

2x 1 - 3x 2 + 3x 3 _ 20
12x 1 + 3x 2 - x 3 _ 10

2x 1 + x 2 + x 3 s 60

xI, x2, x3 z 0 and integer

Continuous Solution: (0,8.333,15)

Integer Solution: (0,8,14) k

118



Problem | 29 [Taha, 1987, p. 337]

max

subject to

3x I + x2 + 3x 3

-x I + 2x 2 + x 3 • 4

4x 2 - 3x 3 • 2

x I - 3x 2 + 2x 3 _ 3

x 1, x2, x3 z 0 and integer

Continuous Solution: (5.333,3.0,3.333)
Integer Solution: (5,2,2)

Problem # 30 [Fogiel, p. 258]

max 3X 1 + x2 + 3x 3

subject to 2x I + x2 + x3 <_ 2

xI + 2x 2 + 3x 3 <_ 5

2x I + 2x 2 + x3 <_ 6

xI, x 2, x3 z 0 and integer

Continuous Solution: (0.2,0,1.6)

Integer Solution: (0,0,i)

Problem # 31 [Hillier and Lieberman, p. 743]

max 4x I - 2x 2 + 7x 3

subject to x I + 5x 3 s i0

x I + x2 - x 3 s 1

6x I - 5x 2 _ 0

xI, x 2, x3 z 0 and integer

Continuous Solution: (1.25,1.5,1.75)
Integer Solution: (0,0,2)

Problem # 32 [Salkin, p. 155]

max

subject to

x 1 - x2 ÷ 2x 3

2x 1 + 4x 2 - x 3 _ 20

-_Xl + x2 + 3x3 - 10x 1 - 9x 2 + 8x 3

xI, x 2, x3 z 0 and integer

Continuous Solution: (1.9571,5.6857,6.6571)

Integer Solution: (4,4,4)

119



Problem # 33 [Salkin, p. 144]

max

subject to

x I + x 2 + x 3

-4x 1 + 5x 2 + 2x 3 s 4
-2x 1 + 5x 2 s 5

3x 1 - 2x 2 + 2x 3 • 6
2x 1 - 5x 2 • 1

x 1, x 2, x 3 Z 0 and integer

Continuous Solution: (3.6304,2.4545,0)
Integer Solution: (3,2,0)

Problem # 34 [Salkin, p. 139]

max 4x 1 + 6x 2 + 3x 3

subject to xI + 2x 2 • 5

9x 1 + 2x 2 - 4x 3 _ 8
-3x 1 - 2x 2 + 2x 3 1
-5x 1 + 4x 2 + 6x 3 _ 16

xI, x2, x3 z 0 and integer

Continuous Solution: (3.2941,0,5.4118)

Integer Solution: (3,0,5)

Problem # 35 [Ozan, p. 354]

max fOx I + 6x 2 + 2x 3

subject to 2x 1 + 2x 2 + 2x 3 s 12
3x 1 + x 2 + 4x 3 _ 9

x 1 _ 1
x 2 _ 1

x 3 _ 4

x 1, x 2, x 3 z 0 and integer

Continuous Solution: (1,1,1.25)

Integer Solution: (i,i,i)

120



Problem # 36 [Fogiel, p. 83]

max

subject to

8x 1 + 15x 2 + 6x 3 + 20x 4

x I +
2x 1 +
3x 1 +

3x 2 + x 3 + 2x 4 • 9
2x 2 + 2x 3 + 3x 4 • 12
3x 2 + 2x 3 + 5x 4 _ 16

x 1, x 2, x 3, x 4 _ 0 and integer

Continuous Solution: (0,1.444,0,2.333)
Integer Solution: (I,I,0,2)

Problem # 37 [Conley, p. 45]

max 4x I + 5x 2 + 9x 3 + 5x 4

subject to xI + 3x 2 + 9x 3 + 6x 4 __ 16
6x I + 6x 2 + 7x 4 _ 19

7x I + 8x 2 + 18x 3 + 3x 4 < 44

x1, x2, x3, x4 _ 0 and integer

Continuous Solution: (2.8652,0,1.2871,0.2584)

Integer Solution: (1,2,1,0)

Problem # 38 [Parker and Rardin, p. 401]

min fOx I + 8x 2 + 3x 3 + 11x 4

subject to x I + x3 + 7x 4 _ I0

3Xl + 5x2 + x3 + x4 E 5

2x 2 + x3 _ 2

x 1, x 2, x3, x 4 _ 0 and integer

Continuous Solution: (0,0.5652,0.8696,1.3043)

Integer Solution: (0,0,4,1)

Problem # 39 [Taha, 1987, p. 106]

max 2x I + x2 - 3x 3 + 5x 4

subject to xI + 7x 2 + 3x 3 + 7x 4 <_ 46

3x I - x2 + x3 + 2x 4 8

2x I + 3x 2 - x3 + x4 i0

x1, x2, x 3, x 4 a 0 and integer

Continuous Solution: (0,i.7143,0,4.8571)

Integer Solution: (0,2,0,4)

121



Problem t 40 [Taha, 1987, p. 106]

max

subject to

-2x I + 6x 2 + 3x 3 - 2x 4

xI + 7x 2 + 3x 3 + 7x 4 _ 46

3x I - x 2 + x3 + 2x 4 _ 8

2x I + 3x 2 - x 3 + x4 s i0

x I, x 2, x3, x 4 z 0 and integer

Continuous Solution: (0,2.2,10.2,0)
Integer Solution: (0,4,6,0)

Problem # 41 [Taha, 1987, p. 106]

3x I - x2 + 3x 3 + 4x 4max

subject to xI + 7x 2 + 3x 3 + 7x 4 _ 46

3x I - x2 + x 3 + 2x 4 _ 8
2X 1 + 3x 2 - x3 + x4 I0

XI, x2, x3, X4 a 0 and integer

Continuous Solution: (0,2.2,10.2,0)

Integer Solution: (0,2,10,0)

Problem | 42 [ISE 326 Project]

max 200x 1 + 150x 2 + 150x 3 + 250x 4

subject to 22x 1 + 27x 3 s 120
5x 1 + 5x 2 + 2x 3 + 4x 4 s 200
2x 1 + 8x 2 + x 3 + 5x 4 < 140
xI + lOx 2 + 8x 4 < II0

4x I + 8x 2 + 16x 3 + fox4 s 240

lOx I + 14x 2 + 8x 3 + 12x 4 < 320

x I, x 2, x 3, x 4 z 0 and integer

Continuous Solution: (5.4545,0,0,13.0682)
Integer Solution: (5,0,0,13)

%,

122



Problem | 43 [Conley, p. 54]

20x1 + 30x 2 + 40x 3 + 45x 4 +55x 5 + 60x 6max

subject to 8x I + 8x 2 + 3x 3 + 12x 4 + 8x 5 + 4x 6 _ 150
2x I + 4x 2 + lOx3 + 4x4 + 2x5 + 6x6 _ 150

3x I + lx 2 + 4x 3 + 2x 4 + 4x 5 + lOx 6 < 150

x 1, x 2, x 3, x 4, x 5, x 6 _ 0 and integer

Continuous Solution: (0,0,8.5366,0,12.1951,6.7073)

Integer Solution: (0,0,8,0,12,7)

Problem # 44 [Conley, p. 146]

max

subject to

20x I + 30x 2 +

+ 81x 8 + 90x 9

35x 3 + 50x 4 +62x 5 + 66x 6 + 70x 7
+ lOOXlo

x 1 + 4x 2 + 3x 3 + 2x 4 + 5x 5 + lx 6 + 2x 7
+ 5x 8 + x 9 + xlO _ 2,700

6x 1 + x 2 + 2x 3 + 7x + 3x 5 + 3x 6 + 2x 7
+ x 8 + 6x 9 + xlO _ 2_700

x 1 + 4x 2 + 3x 3 + 2x 4 + x 5 + 4x 6 + 2x 7
+ 2x 8 + x 9 + 2xlO • 2,700

5x I + 5x 2 + 2x 3 + x 4 + 2x 5 + x 6 + 3x 7
+ 3x 8 + x 9 + 5x10 _ 2,700

x 1, x 2, x 3, x 4, x 5, x 6, x7, x8, x 9, xlO _ 0 and integer

Continuous Solution: (0,0,0,0,0,330.8824,0,397.0588,

185.2941,198.5294)

Integer Solution: (0,0,0,0,0,327,0,397,187,199)

Problem # 45 [Conley, p. 141]

max 20x I + 15x 2 + 19x 3 + 27x 4 + 34x 5 + 42x 6 + 58x 7
+ 21x 8 + 90x 9 + 66Xl + 15Xl + 75x12 + 14x130 1
+ 88x14 + 62x15 + 60x16 + 58x17 + 54x18 + 90x19
+ 29x20

subject to 4x I + 5x 2 + 2x 3 + 2x 4 + x 5 + 5x 6 + 6x 7 + 5x 8
+ 4x 9 + 3x10 + 5Xll + 6x12 + 2x13 + 8x14 + 6x
+ 6x15 + 5x16 + x17 + x18 + 5x19 + 5x20 _ 3,8_

x I + x 2 + 8x 3 + 6x 4 + 4x 5 + 2x 6 + 3x 7 + 2x 8

+ 4x 9 + 6Xlo + Xll + 2x12 + x13 + __48002x+ 6x15+ x16 + 3x17 + 4x18 + 2x19 + 5x20

123



3x I + 2x 2 + x + 2x 4 + x 5 + x 6 + 3x 7 + x 8
+ 5x3 + x + x 1+ x 9 + 2xlO + _Xll + 2x12 ;_O01 1 5

+ x16 + 6x17 + x18 + 5x19 + 2x20 <_.3,

2x 1 + 2x 2 + 2x 3
+ x9 + XlO +
+ ix16 + 7x173:1_

+ 3x 4 + 2x_ + 2x 6 + x 7 + 4x 8
+ 2XlZ + 7x + 6x + 2x13 14 15

xlS + 3x19 + 4x20 S 3,800

x 1, x 2, x 3, x 4, x 5, x 6, x 7, x 8, x 9, xlO,.Xll_ x12, x13,
x14, x15, x16, x17, x18, x19, x20 z u ana _nceger

Continuous Solution: (0,0,0,0,0,0,0,0,575.7576,0,0,0,0,

0,0,0,345.4545,0,230.3030,0)

B&B Integer Solution: (0,0,0,0,0,0,0,0,573,0,0,0,0,0,0,0,

344,3,232,0)

IESIP Integer Solution: (0,0,0,0,0,0,0,0,575,0,0,0,0,0,0,0,

345,0,231,0)

IESIP Integer Solution: (0,0,0,0,0,0,0,0,576,0,0,0,0,0,0,0,

345,0,230,0)

124



APPROVAL

AN IMPROVED EXPLORATORY SEARCH TECHNIQUE FOR PURE INTEGER

LINEAR PROGRAMMING PROBLEMS

By F.R. Fogle

The information in this report has been reviewed for technical content. Review of any

information concerning Department of Defense or nuclear energy activities or programs has been

made by the MSFC Secrity Classification Officer. This report, in its entirety, has been determined
to be unclassified.

L. DON _vVOODRLTFF

Chief, Systems Analysis Division

_WII.I.IAxl B. CHUBB

Director, Systems Analysis and Integration Laboratory

U,S. GOVERNMENT PRINTING OFFICE 1990--531--081/20238

125



v_


